These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16388822)

  • 21. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate.
    Hou Z; Mitra B
    J Biol Chem; 2003 Aug; 278(31):28455-61. PubMed ID: 12746428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.
    Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H
    J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA.
    Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M
    Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance.
    Tong L; Nakashima S; Shibasaka M; Katsuhara M; Kasamo K
    J Bacteriol; 2002 Sep; 184(18):5027-35. PubMed ID: 12193618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA.
    Liu T; Reyes-Caballero H; Li C; Scott RA; Giedroc DP
    Biochemistry; 2007 Oct; 46(39):11057-68. PubMed ID: 17824670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum.
    LaGier MJ; Zhu G; Keithly JS
    Gene; 2001 Mar; 266(1-2):25-34. PubMed ID: 11290416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator.
    Liu T; Golden JW; Giedroc DP
    Biochemistry; 2005 Jun; 44(24):8673-83. PubMed ID: 15952774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA.
    Zhou L; Singleton C; Hecht O; Moore GR; Le Brun NE
    FEBS J; 2012 Jan; 279(2):285-98. PubMed ID: 22077885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium.
    Lebrun M; Audurier A; Cossart P
    J Bacteriol; 1994 May; 176(10):3040-8. PubMed ID: 8188605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain.
    Mana-Capelli S; Mandal AK; Argüello JM
    J Biol Chem; 2003 Oct; 278(42):40534-41. PubMed ID: 12876283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase.
    Bal N; Mintz E; Guillain F; Catty P
    FEBS Lett; 2001 Oct; 506(3):249-52. PubMed ID: 11602255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus.
    Argüello JM; Mandal AK; Mana-Capelli S
    Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
    Gabelli SB; Bianchet MA; Bessman MJ; Amzel LM
    Nat Struct Biol; 2001 May; 8(5):467-72. PubMed ID: 11323725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs.
    Assenmacher N; Wenig K; Lammens A; Hopfner KP
    J Mol Biol; 2006 Jan; 355(4):675-83. PubMed ID: 16309703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases.
    Zagorski N; Wilson DB
    Appl Biochem Biotechnol; 2004 Apr; 117(1):33-48. PubMed ID: 15126702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes.
    Dutta SJ; Liu J; Mitra B
    Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.