These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16388822)
41. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. Eren E; Kennedy DC; Maroney MJ; Argüello JM J Biol Chem; 2006 Nov; 281(45):33881-91. PubMed ID: 16973620 [TBL] [Abstract][Full Text] [Related]
42. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+. Wu CC; Bal N; Perard J; Lowe J; Boscheron C; Mintz E; Catty P Biochem Biophys Res Commun; 2004 Nov; 324(3):1034-40. PubMed ID: 15485658 [TBL] [Abstract][Full Text] [Related]
43. The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal binding and ATPase activity. Okkeri J; Haltia T Biochim Biophys Acta; 2006 Nov; 1757(11):1485-95. PubMed ID: 16890908 [TBL] [Abstract][Full Text] [Related]
44. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Nucifora G; Chu L; Misra TK; Silver S Proc Natl Acad Sci U S A; 1989 May; 86(10):3544-8. PubMed ID: 2524829 [TBL] [Abstract][Full Text] [Related]
45. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Wernimont AK; Huffman DL; Lamb AL; O'Halloran TV; Rosenzweig AC Nat Struct Biol; 2000 Sep; 7(9):766-71. PubMed ID: 10966647 [TBL] [Abstract][Full Text] [Related]
46. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438 [TBL] [Abstract][Full Text] [Related]
47. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. Legatzki A; Grass G; Anton A; Rensing C; Nies DH J Bacteriol; 2003 Aug; 185(15):4354-61. PubMed ID: 12867443 [TBL] [Abstract][Full Text] [Related]
48. Analysis of the quaternary structure of the MutL C-terminal domain. Kosinski J; Steindorf I; Bujnicki JM; Giron-Monzon L; Friedhoff P J Mol Biol; 2005 Aug; 351(4):895-909. PubMed ID: 16024043 [TBL] [Abstract][Full Text] [Related]
49. A sulfur-based transport pathway in Cu+-ATPases. Mattle D; Zhang L; Sitsel O; Pedersen LT; Moncelli MR; Tadini-Buoninsegni F; Gourdon P; Rees DC; Nissen P; Meloni G EMBO Rep; 2015 Jun; 16(6):728-40. PubMed ID: 25956886 [TBL] [Abstract][Full Text] [Related]
50. Structural Role of the First Four Transmembrane Helices in ZntA, a P Roberts CS; Muralidharan S; Ni F; Mitra B Biochemistry; 2020 Dec; 59(47):4488-4498. PubMed ID: 33190490 [TBL] [Abstract][Full Text] [Related]
51. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif. Håkansson KO Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1181-6. PubMed ID: 19923713 [TBL] [Abstract][Full Text] [Related]
52. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753 [TBL] [Abstract][Full Text] [Related]
53. Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Arnesano F; Banci L; Bertini I; Ciofi-Baffoni S; Molteni E; Huffman DL; O'Halloran TV Genome Res; 2002 Feb; 12(2):255-71. PubMed ID: 11827945 [TBL] [Abstract][Full Text] [Related]
54. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. Tsai KJ; Lin YF; Wong MD; Yang HH; Fu HL; Rosen BP J Bioenerg Biomembr; 2002 Jun; 34(3):147-56. PubMed ID: 12171064 [TBL] [Abstract][Full Text] [Related]
55. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate. Chien CC; Huang CH; Lin YW Appl Biochem Biotechnol; 2013 Mar; 169(6):1837-46. PubMed ID: 23344939 [TBL] [Abstract][Full Text] [Related]
56. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. Kawachi M; Kobae Y; Kogawa S; Mimura T; Krämer U; Maeshima M FEBS J; 2012 Jul; 279(13):2339-56. PubMed ID: 22520078 [TBL] [Abstract][Full Text] [Related]
57. Cloning and membrane topology of a P type ATPase from Helicobacter pylori. Melchers K; Weitzenegger T; Buhmann A; Steinhilber W; Sachs G; Schäfer KP J Biol Chem; 1996 Jan; 271(1):446-57. PubMed ID: 8550601 [TBL] [Abstract][Full Text] [Related]
58. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. Argüello JM J Membr Biol; 2003 Sep; 195(2):93-108. PubMed ID: 14692449 [TBL] [Abstract][Full Text] [Related]
59. Characterization of a cobalt-specific P(1B)-ATPase. Zielazinski EL; Cutsail GE; Hoffman BM; Stemmler TL; Rosenzweig AC Biochemistry; 2012 Oct; 51(40):7891-900. PubMed ID: 22971227 [TBL] [Abstract][Full Text] [Related]
60. Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. Binet MR; Poole RK FEBS Lett; 2000 May; 473(1):67-70. PubMed ID: 10802061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]