BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16388890)

  • 1. Role of astrocytes in reproduction and neuroprotection.
    Mahesh VB; Dhandapani KM; Brann DW
    Mol Cell Endocrinol; 2006 Feb; 246(1-2):1-9. PubMed ID: 16388890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway.
    Dhandapani KM; Hadman M; De Sevilla L; Wade MF; Mahesh VB; Brann DW
    J Biol Chem; 2003 Oct; 278(44):43329-39. PubMed ID: 12888549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for hypothalamic astrocytes in dehydroepiandrosterone and estradiol regulation of gonadotropin-releasing hormone (GnRH) release by GnRH neurons.
    Zwain IH; Arroyo A; Amato P; Yen SS
    Neuroendocrinology; 2002 Jun; 75(6):375-83. PubMed ID: 12065890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiostatic role of astrocytes: suppression of vascular endothelial cell growth by TGF-beta and other inhibitory factor(s).
    Behzadian MA; Wang XL; Jiang B; Caldwell RB
    Glia; 1995 Dec; 15(4):480-90. PubMed ID: 8926041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors.
    Lin CH; Cheng FC; Lu YZ; Chu LF; Wang CH; Hsueh CM
    Exp Neurol; 2006 Sep; 201(1):225-33. PubMed ID: 16765947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytes protect MN9D neuronal cells against rotenone-induced oxidative stress by a glutathione-dependent mechanism.
    Cao Q; Wei LR; Lu LL; Zhao CL; Zhao HY; Yang H
    Sheng Li Xue Bao; 2007 Jun; 59(3):253-9. PubMed ID: 17579777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smad proteins are targets of transforming growth factor beta1 in immortalised gonadotrophin-releasing hormone releasing neurones.
    Galbiati M; Saredi S; RomanĂ² N; Martini L; Motta M; Melcangi RC
    J Neuroendocrinol; 2005 Nov; 17(11):753-60. PubMed ID: 16219004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothalamic astrocytes respond to transforming growth factor-alpha with the secretion of neuroactive substances that stimulate the release of luteinizing hormone-releasing hormone.
    Ma YJ; Berg-von der Emde K; Rage F; Wetsel WC; Ojeda SR
    Endocrinology; 1997 Jan; 138(1):19-25. PubMed ID: 8977380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of transforming growth factor-beta1 by basic fibroblast growth factor in rat C6 glioma cells and astrocytes is mediated by MEK/ERK signaling and AP-1 activation.
    Dhandapani KM; Khan MM; Wade FM; Wakade C; Mahesh VB; Brann DW
    J Neurosci Res; 2007 Apr; 85(5):1033-45. PubMed ID: 17335076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism.
    Jeon ES; Moon HJ; Lee MJ; Song HY; Kim YM; Bae YC; Jung JS; Kim JH
    J Cell Sci; 2006 Dec; 119(Pt 23):4994-5005. PubMed ID: 17105765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2.
    Singh NN; Ramji DP
    Arterioscler Thromb Vasc Biol; 2006 Jun; 26(6):1323-9. PubMed ID: 16601234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-sensing receptor stimulates secretion of an interferon-gamma-induced monokine (CXCL10) and monocyte chemoattractant protein-3 in immortalized GnRH neurons.
    Bandyopadhyay S; Jeong KH; Hansen JT; Vassilev PM; Brown EM; Chattopadhyay N
    J Neurosci Res; 2007 Mar; 85(4):882-95. PubMed ID: 17285630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro.
    Lacmann A; Hess D; Gohla G; Roussa E; Krieglstein K
    Neuroscience; 2007 Dec; 150(3):647-57. PubMed ID: 17997227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor-beta and astrocytic conditioned medium influence luteinizing hormone-releasing hormone gene expression in the hypothalamic cell line GT1.
    Galbiati M; Zanisi M; Messi E; Cavarretta I; Martini L; Melcangi RC
    Endocrinology; 1996 Dec; 137(12):5605-9. PubMed ID: 8940390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (-)-Epigallocatechin gallate reduces transforming growth factor beta-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts.
    Hayashi K; Takai S; Matsushima-Nishiwaki R; Hanai Y; Kato K; Tokuda H; Kozawa O
    Life Sci; 2008 May; 82(19-20):1012-7. PubMed ID: 18407296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1).
    Moreels M; Vandenabeele F; Dumont D; Robben J; Lambrichts I
    Neuropathol Appl Neurobiol; 2008 Oct; 34(5):532-46. PubMed ID: 18005096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential.
    Wen JP; Lv WS; Yang J; Nie AF; Cheng XB; Yang Y; Ge Y; Li XY; Ning G
    Biochem Biophys Res Commun; 2008 Jul; 371(4):756-61. PubMed ID: 18466765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogen-astrocyte-luteinizing hormone-releasing hormone signaling: a role for transforming growth factor-beta(1).
    Buchanan CD; Mahesh VB; Brann DW
    Biol Reprod; 2000 Jun; 62(6):1710-21. PubMed ID: 10819775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1-1: is transforming growth factor-beta the principle involved?
    Melcangi RC; Galbiati M; Messi E; Piva F; Martini L; Motta M
    Endocrinology; 1995 Feb; 136(2):679-86. PubMed ID: 7835301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogen-induced hypothalamic synaptic plasticity and pituitary sensitization in the control of the estrogen-induced gonadotrophin surge.
    Naftolin F; Garcia-Segura LM; Horvath TL; Zsarnovszky A; Demir N; Fadiel A; Leranth C; Vondracek-Klepper S; Lewis C; Chang A; Parducz A
    Reprod Sci; 2007 Feb; 14(2):101-16. PubMed ID: 17636222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.