BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16389086)

  • 1. A mixture theory analysis for passive transport in osmotic loading of cells.
    Ateshian GA; Likhitpanichkul M; Hung CT
    J Biomech; 2006; 39(3):464-75. PubMed ID: 16389086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic loading of spherical gels: a biomimetic study of hindered transport in the cell protoplasm.
    Albro MB; Chahine NO; Caligaris M; Wei VI; Likhitpanichkul M; Ng KW; Hung CT; Ateshian GA
    J Biomech Eng; 2007 Aug; 129(4):503-10. PubMed ID: 17655471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.
    Curry MR; Shachar-Hill B; Hill AE
    J Membr Biol; 2001 May; 181(2):115-23. PubMed ID: 11420598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the partitioning of osmolytes by the cytoplasm on the passive response of cells to osmotic loading.
    Albro MB; Petersen LE; Li R; Hung CT; Ateshian GA
    Biophys J; 2009 Dec; 97(11):2886-93. PubMed ID: 19948117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Multisolute Steric Interactions on Membrane Partition Coefficients.
    Lazzara MJ; Blankschtein D; Deen WM
    J Colloid Interface Sci; 2000 Jun; 226(1):112-122. PubMed ID: 11401354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations.
    Slezak A
    Polim Med; 2007; 37(1):57-66. PubMed ID: 17703724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic flow of water across permeable cellulose membranes.
    DURBIN RP
    J Gen Physiol; 1960 Nov; 44(2):315-26. PubMed ID: 13725178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.
    Elmoazzen HY; Elliott JA; McGann LE
    Biophys J; 2009 Apr; 96(7):2559-71. PubMed ID: 19348741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amicus Plato, sed magis amica veritas: plots must obey the laws they refer to and models shall describe biophysical reality!
    Katkov II
    Cryobiology; 2011 Jun; 62(3):242-4. PubMed ID: 21376028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations.
    Kargol M; Kargol A
    Biophys Chem; 2003 Jan; 103(2):117-27. PubMed ID: 12568935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of osmosis in a porous medium.
    Cardoso SS; Cartwright JH
    R Soc Open Sci; 2014 Nov; 1(3):140352. PubMed ID: 26064566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.
    Kim Y; Ye Q; Reinhardt H; Steudle E
    J Exp Bot; 2006; 57(15):4133-44. PubMed ID: 17085756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cell size distribution on predicted osmotic responses of cells.
    Elmoazzen HY; Chan CC; Acker JP; Elliott JA; McGann LE
    Cryo Letters; 2005; 26(3):147-58. PubMed ID: 16082441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of thickness of concentration boundary layers by osmotic volume flux determination.
    Jasik-Ślęzak JS; Olszówka KM; Slęzak A
    Gen Physiol Biophys; 2011 Jun; 30(2):186-95. PubMed ID: 21613674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent flow in osmosis and hydraulics: network thermodynamics and representation by bond graphs.
    Atlan H; Thoma J
    Am J Physiol; 1987 Jun; 252(6 Pt 2):R1182-94. PubMed ID: 3591989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photometric determination of phenomenological correlation between osmotic behavior and hemolysis of red blood cells.
    Yang XS; Kamino K
    Jpn J Physiol; 1995; 45(5):723-41. PubMed ID: 8713172
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.