BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16389089)

  • 1. Cement flow during impaction allografting: a finite element analysis.
    Frei H; Gadala MS; Masri BA; Duncan CP; Oxland TR
    J Biomech; 2006; 39(3):493-502. PubMed ID: 16389089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of intrusion characteristics of low viscosity cement Simplex-P and Palacos cements in a bovine cancellous bone model.
    Rey RM; Paiement GD; McGann WM; Jasty M; Harrigan TP; Burke DW; Harris WH
    Clin Orthop Relat Res; 1987 Feb; (215):272-8. PubMed ID: 3802646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characteristics of the bone-graft-cement interface after impaction allografting.
    Frei H; Mitchell P; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Jan; 23(1):9-17. PubMed ID: 15607869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of initial pressurization and cup introduction time on the depth of cement penetration in an acetabular model.
    Abdulghani S; Wang JS; McCarthy I; Flivik G
    Acta Orthop; 2007 Jun; 78(3):333-9. PubMed ID: 17611845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femoral stem insertion generates high bone cement pressurization.
    Churchill DL; Incavo SJ; Uroskie JA; Beynnon BD
    Clin Orthop Relat Res; 2001 Dec; (393):335-44. PubMed ID: 11764367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and mechanical changes of the bone graft-cement interface after impaction allografting.
    Frei H; O'Connell J; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Nov; 23(6):1271-9. PubMed ID: 15964167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained pressurization of polymethylmethacrylate: a comparison of low- and moderate-viscosity bone cements.
    Bean DJ; Hollis JM; Woo SL; Convery FR
    J Orthop Res; 1988; 6(4):580-4. PubMed ID: 3379511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cement pressure and bone strength on polymethylmethacrylate fixation.
    Askew MJ; Steege JW; Lewis JL; Ranieri JR; Wixson RL
    J Orthop Res; 1984; 1(4):412-20. PubMed ID: 6491790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetabular cement compactor. An experimental study of pressurization of cement in the acetabulum in total hip arthroplasty.
    Oh I; Merckx DB; Harris WH
    Clin Orthop Relat Res; 1983; (177):289-93. PubMed ID: 6861403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cement viscosity on cement interdigitation and venous fat content under in vivo conditions: a bilateral study of 13 sheep.
    Breusch S; Heisel C; Müller J; Borchers T; Mau H
    Acta Orthop Scand; 2002 Aug; 73(4):409-15. PubMed ID: 12358114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cement mantle fatigue failure in total hip replacement: experimental and computational testing.
    Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M
    J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction analysis of cement interface temperature in total knee arthroplasty.
    Fukushima H; Hashimoto Y; Yoshiya S; Kurosaka M; Matsuda M; Kawamura S; Iwatsubo T
    Kobe J Med Sci; 2002 Apr; 48(1-2):63-72. PubMed ID: 12151722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of bleeding on the cement-bone interface. An experimental study.
    Majkowski RS; Bannister GC; Miles AW
    Clin Orthop Relat Res; 1994 Feb; (299):293-7. PubMed ID: 8119032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of low-viscosity cement on mantle morphology and femoral stem micromotion: a cadaver model with simulated blood flow.
    Race A; Miller MA; Clarke MT; Mann KA; Higham PA
    Acta Orthop; 2006 Aug; 77(4):607-16. PubMed ID: 16929438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penetration and flow of acrylic bone cement.
    Markolf KL; Amstutz HC
    Clin Orthop Relat Res; 1976; (121):99-102. PubMed ID: 991525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage.
    Baroud G; Crookshank M; Bohner M
    Spine (Phila Pa 1976); 2006 Oct; 31(22):2562-8. PubMed ID: 17047545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro measurement of bone-acrylic interface pressure during femoral component insertion.
    Markolf KL; Amstutz HC
    Clin Orthop Relat Res; 1976; (121):60-6. PubMed ID: 991520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cementing technique in femoral resurfacing.
    Beckmann J; Goldapp C; Ringleff K; Schaumburger J; Grifka J; Perlick L
    Arch Orthop Trauma Surg; 2009 Oct; 129(10):1317-25. PubMed ID: 18802712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.