BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16389466)

  • 1. The influence of grain size on the ductility of micro-scale stainless steel stent struts.
    Murphy BP; Cuddy H; Harewood FJ; Connolley T; McHugh PE
    J Mater Sci Mater Med; 2006 Jan; 17(1):1-6. PubMed ID: 16389466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stress-strain behavior of coronary stent struts is size dependent.
    Murphy BP; Savage P; McHugh PE; Quinn DF
    Ann Biomed Eng; 2003 Jun; 31(6):686-91. PubMed ID: 12797618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of size dependent failure in cardiovascular stent struts under tension and bending.
    Harewood FJ; McHugh PE
    Ann Biomed Eng; 2007 Sep; 35(9):1539-53. PubMed ID: 17503185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of annealing 316 LVM stents.
    Meyer-Kobbe C; Hinrichs BH
    Med Device Technol; 2003; 14(1):20-5. PubMed ID: 12974121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response.
    Huang L; Pu C; Fisher RK; Mountain DJ; Gao Y; Liaw PK; Zhang W; He W
    Acta Biomater; 2015 Oct; 25():356-68. PubMed ID: 26162585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal processing and characterization of 316LVM cardiovascular stent.
    Verma A; Choubey A; Raval A; Kothwala D
    Biomed Mater Eng; 2006; 16(6):381-95. PubMed ID: 17119277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue and fracture in materials used for micro-scale biomedical components.
    Wiersma S; Dolan F; Taylor D
    Biomed Mater Eng; 2006; 16(2):137-46. PubMed ID: 16477122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.
    Moravej M; Prima F; Fiset M; Mantovani D
    Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on the coupling expansion deformation behavior of coronary stainless steel stent in vitro].
    Wang W; Feng H; Wang X; Chen Y; Zhang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):1027-32, 1062. PubMed ID: 24459965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application.
    Obayi CS; Tolouei R; Mostavan A; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Mantovani D
    Biomatter; 2016; 6(1):e959874. PubMed ID: 25482336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational micromechanics of bioabsorbable magnesium stents.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2014 Jun; 34():93-105. PubMed ID: 24566380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoglass-based balloon expandable stents.
    Kumar GP; Yuan S; Cui F; Branicio PS; Jafary-Zadeh M
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):73-79. PubMed ID: 30895727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion resistance studies on grain-boundary etched drug-eluting stents.
    Rettig R; Kunze J; Stöver M; Wintermantel E; Virtanen S
    J Mater Sci Mater Med; 2007 Jul; 18(7):1377-87. PubMed ID: 17277971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface conditioning of 316LVM slotted tube cardiovascular stents.
    Raval A; Choubey A; Engineer C; Kothwala D
    J Biomater Appl; 2005 Jan; 19(3):197-213. PubMed ID: 15613380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents.
    Wiesent L; Schultheiß U; Lulla P; Noster U; Schratzenstaller T; Schmid C; Nonn A; Spear A
    PLoS One; 2020; 15(12):e0244463. PubMed ID: 33373392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 50 Hz fatigue testing of large diameter stent grafts.
    Schröder B; Kaufmann R
    Med Device Technol; 2007; 18(2):58-60. PubMed ID: 17494505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.