These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 16389473)

  • 41. Biocompatibility of new Ti-Nb-Ta base alloys.
    Hussein AH; Gepreel MA; Gouda MK; Hefnawy AM; Kandil SH
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():574-8. PubMed ID: 26838885
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The intrinsically high pitting corrosion resistance of mechanically polished nitinol in simulated physiological solutions.
    Bai Z; Rotermund HH
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):1-13. PubMed ID: 21648066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface treatment, corrosion behavior, and apatite-forming ability of Ti-45Nb implant alloy.
    Gostin PF; Helth A; Voss A; Sueptitz R; Calin M; Eckert J; Gebert A
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):269-78. PubMed ID: 23166048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications.
    Acharya S; Panicker AG; Gopal V; Dabas SS; Manivasagam G; Suwas S; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110729. PubMed ID: 32204039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.
    Kesteven J; Kannan MB; Walter R; Khakbaz H; Choe HC
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():226-31. PubMed ID: 25491981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.
    Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.
    Raducanu D; Vasilescu E; Cojocaru VD; Cinca I; Drob P; Vasilescu C; Drob SI
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1421-30. PubMed ID: 21783152
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of pH on the electrochemical behaviour of titanium alloys for implant applications.
    Souza ME; Lima L; Lima CR; Zavaglia CA; Freire CM
    J Mater Sci Mater Med; 2009 Feb; 20(2):549-52. PubMed ID: 18987951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.
    Shabalovskaya SA
    Biomed Mater Eng; 2002; 12(1):69-109. PubMed ID: 11847410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.
    Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA
    J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Corrosion analysis of NiCu and PdCo thermal seed alloys used as interstitial hyperthermia implants.
    Paulus JA; Parida GR; Tucker RD; Park JB
    Biomaterials; 1997 Dec; 18(24):1609-14. PubMed ID: 9613808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical corrosion of titanium and titanium-based alloys.
    Kuphasuk C; Oshida Y; Andres CJ; Hovijitra ST; Barco MT; Brown DT
    J Prosthet Dent; 2001 Feb; 85(2):195-202. PubMed ID: 11208211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy.
    Starosvetsky D; Gotman I
    Biomaterials; 2001 Jul; 22(13):1853-9. PubMed ID: 11396890
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti-6Al-7Nb alloy in Hank's solution.
    Lavos-Valereto IC; Wolynec S; Ramires I; Guastaldi AC; Costa I
    J Mater Sci Mater Med; 2004 Jan; 15(1):55-9. PubMed ID: 15338591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.
    Jinlong L; Tongxiang L; Chen W; Limin D
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():192-7. PubMed ID: 27040211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermomechanical processing of In-containing β-type Ti-Nb alloys.
    Pilz S; Geissler D; Calin M; Eckert J; Zimmermann M; Freudenberger J; Gebert A
    J Mech Behav Biomed Mater; 2018 Mar; 79():283-291. PubMed ID: 29348069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid.
    Guerra C; Sancy M; Walczak M; Martínez C; Ringuedé A; Cassir M; Han J; Ogle K; de Melo HG; Salinas V; Aguilar C
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110758. PubMed ID: 32279776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.