BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16389599)

  • 1. Asbestos mineral analysis by UV Raman and energy-dispersive X-ray spectroscopy.
    Petry R; Mastalerz R; Zahn S; Mayerhöfer TG; Völksch G; Viereck-Götte L; Kreher-Hartmann B; Holz L; Lankers M; Popp J
    Chemphyschem; 2006 Feb; 7(2):414-20. PubMed ID: 16389599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments.
    Gamble JF; Gibbs GW
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S154-86. PubMed ID: 18396365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral phases and some reexamined characteristics of the International Union Against Cancer standard asbestos samples.
    Kohyama N; Shinohara Y; Suzuki Y
    Am J Ind Med; 1996 Nov; 30(5):515-28. PubMed ID: 8909601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Identification of Pulmonary Asbestos Fibres in a Spanish Population.
    Velasco-García MI; Cruz MJ; Diego C; Montero MA; Álvarez-Simón D; Ferrer J
    Lung; 2017 Oct; 195(5):671-677. PubMed ID: 28791466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infra Red Spectroscopy of the Regulated Asbestos Amphiboles.
    Ventura GD; Vigliaturo R; Gieré R; Pollastri S; Gualtieri AF; Iezzi G
    Minerals (Basel); 2018 Sep; 8(9):. PubMed ID: 31223499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of inorganic particles, fibers, and asbestos bodies by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy and micro-Raman spectroscopy in thin sections of lung and pleural plaque.
    Rinaudo C; Croce A; Musa M; Fornero E; Allegrina M; Trivero P; Bellis D; Sferch D; Toffalorio F; Veronesi G; Pelosi G
    Appl Spectrosc; 2010 Jun; 64(6):571-7. PubMed ID: 20537223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incidence of ferruginous bodies in the lungs during a 45-year period and mineralogical analysis of the core fibres and uncoated fibres.
    Shishido S; Iwai K; Tukagoshi K
    IARC Sci Publ; 1989; (90):229-38. PubMed ID: 2744825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring EMPs in the lung what can be measured in the lung: Asbestiform minerals and cleavage fragments.
    Roggli VL
    Toxicol Appl Pharmacol; 2018 Dec; 361():14-17. PubMed ID: 29959999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. There is plenty of asbestos at the bottom. The case of magnesite raw material contaminated with asbestos fibres.
    Gualtieri AF; Malferrari D; Di Giuseppe D; Scognamiglio V; Sala O; Gualtieri ML; Bersani D; Fornasini L; Mugnaioli E
    Sci Total Environ; 2023 Nov; 898():166275. PubMed ID: 37582451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
    Choi JK; Vigliaturo R; Gieré R; Pérez-Rodríguez I
    Appl Environ Microbiol; 2023 Jun; 89(6):e0204822. PubMed ID: 37184266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne mineral fibre concentrations in an urban area near an asbestos-cement plant.
    Marconi A; Cecchetti G; Barbieri M
    IARC Sci Publ; 1989; (90):336-46. PubMed ID: 2744833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of infrared spectrometry (FT-IR) for mineral identification of asbestos in bulk samples].
    Maciejewska A
    Med Pr; 2012; 63(2):181-9. PubMed ID: 22779324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental exposure to asbestos and other inorganic fibres using animal lung model.
    Fornero E; Belluso E; Capella S; Bellis D
    Sci Total Environ; 2009 Jan; 407(3):1010-8. PubMed ID: 19027935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts.
    Tian H; Wachs IE; Briand LE
    J Phys Chem B; 2005 Dec; 109(49):23491-9. PubMed ID: 16375323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.
    Pollastri S; D'Acapito F; Trapananti A; Colantoni I; Andreozzi GB; Gualtieri AF
    J Hazard Mater; 2015 Nov; 298():282-93. PubMed ID: 26073382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomimetic approach to the chemical inactivation of chrysotile fibres by lichen metabolites.
    Turci F; Favero-Longo SE; Tomatis M; Martra G; Castelli D; Piervittori R; Fubini B
    Chemistry; 2007; 13(14):4081-93. PubMed ID: 17295378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy of some basic chloride containing minerals of lead and copper.
    Frost RL; Williams PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):2071-7. PubMed ID: 15248988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron nuclearity in mineral fibres: Unravelling the catalytic activity for predictive modelling of toxicity.
    Gualtieri AF; Cocchi M; Muniz-Miranda F; Pedone A; Castellini E; Strani L
    J Hazard Mater; 2024 May; 469():134004. PubMed ID: 38521041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative and quantitative evaluation of chrysotile and crocidolite fibres with infrared spectrophotometry: application to asbestos-cement products.
    Valerio F; Balducci D
    IARC Sci Publ; 1989; (90):197-204. PubMed ID: 2545609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of asbestos fibers within single cells.
    Macdonald JL; Kane AB
    Lab Invest; 1986 Aug; 55(2):177-85. PubMed ID: 3736020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.