These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16389724)

  • 21. Comparison of static and dynamic intrinsic positive end-expiratory pressure using the Campbell diagram.
    Yan S; Kayser B; Tobiasz M; Sliwinski P
    Am J Respir Crit Care Med; 1996 Oct; 154(4 Pt 1):938-44. PubMed ID: 8887589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The value of multiple tests of respiratory muscle strength.
    Steier J; Kaul S; Seymour J; Jolley C; Rafferty G; Man W; Luo YM; Roughton M; Polkey MI; Moxham J
    Thorax; 2007 Nov; 62(11):975-80. PubMed ID: 17557772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of breathing in a subset of patients with systemic lupus erythematosus.
    Scano G; Goti P; Duranti R; Misuri G; Emmi L; Rosi E
    Chest; 1995 Sep; 108(3):759-66. PubMed ID: 7656630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An open-source software for automatic calculation of respiratory parameters based on esophageal pressure.
    Mayaud L; Lejaille M; Prigent H; Louis B; Fauroux B; Lofaso F
    Respir Physiol Neurobiol; 2014 Feb; 192():1-6. PubMed ID: 24316219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chest wall kinematics, respiratory muscle action and dyspnoea during arm vs. leg exercise in humans.
    Romagnoli I; Gorini M; Gigliotti F; Bianchi R; Lanini B; Grazzini M; Stendardi L; Scano G
    Acta Physiol (Oxf); 2006 Sep; 188(1):63-73. PubMed ID: 16911254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positive end-expiratory pressure attenuates hemodynamic effects induced by an overload of inspiratory muscles in patients with COPD.
    Schaper-Magalhães F; Pinho JF; Capuruço CAB; Rodrigues-Machado MG
    Int J Chron Obstruct Pulmon Dis; 2017; 12():2943-2954. PubMed ID: 29062231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity.
    Pankow W; Podszus T; Gutheil T; Penzel T; Peter J; Von Wichert P
    J Appl Physiol (1985); 1998 Oct; 85(4):1236-43. PubMed ID: 9760311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chest wall kinematics and respiratory muscle coordinated action during hypercapnia in healthy males.
    Romagnoli I; Gigliotti F; Lanini B; Bianchi R; Soldani N; Nerini M; Duranti R; Scano G
    Eur J Appl Physiol; 2004 May; 91(5-6):525-33. PubMed ID: 14735363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inspiratory muscle weakness and dyspnea in chronic heart failure.
    McParland C; Krishnan B; Wang Y; Gallagher CG
    Am Rev Respir Dis; 1992 Aug; 146(2):467-72. PubMed ID: 1489142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dyspnea and inspiratory muscle function during exercise in severe chronic obstructive pulmonary disease (COPD)].
    Matsushita H
    Nihon Kyobu Shikkan Gakkai Zasshi; 1992 Jul; 30(7):1242-9. PubMed ID: 1405099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CPAP reduces inspiratory work more than dyspnea during hyperinflation with intrinsic PEEP.
    Fessler HE; Brower RG; Permutt S
    Chest; 1995 Aug; 108(2):432-40. PubMed ID: 7634880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD.
    O'Donoghue FJ; Catcheside PG; Jordan AS; Bersten AD; McEvoy RD
    Thorax; 2002 Jun; 57(6):533-9. PubMed ID: 12037230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correcting static intrinsic positive end-expiratory pressure for expiratory muscle contraction. Validation of a new method.
    Zakynthinos SG; Vassilakopoulos T; Zakynthinos E; Roussos C; Tzelepis GE
    Am J Respir Crit Care Med; 1999 Sep; 160(3):785-90. PubMed ID: 10471597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of obesity on perceptual and mechanical responses to bronchoconstriction in asthma.
    Deesomchok A; Fisher T; Webb KA; Ora J; Lam YM; Lougheed MD; O'Donnell DE
    Am J Respir Crit Care Med; 2010 Jan; 181(2):125-33. PubMed ID: 19910609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP.
    MacIntyre NR; Cheng KC; McConnell R
    Chest; 1997 Jan; 111(1):188-93. PubMed ID: 8996015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients.
    Lessard MR; Lofaso F; Brochard L
    Am J Respir Crit Care Med; 1995 Feb; 151(2 Pt 1):562-9. PubMed ID: 7842221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breathing pattern and carbon dioxide retention in severe chronic obstructive pulmonary disease.
    Gorini M; Misuri G; Corrado A; Duranti R; Iandelli I; De Paola E; Scano G
    Thorax; 1996 Jul; 51(7):677-83. PubMed ID: 8882072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respiratory muscle function and dyspnea in patients with chronic congestive heart failure.
    Mancini DM; Henson D; LaManca J; Levine S
    Circulation; 1992 Sep; 86(3):909-18. PubMed ID: 1516204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathophysiology of exercise dyspnea in healthy subjects and in patients with chronic obstructive pulmonary disease (COPD).
    Grazzini M; Stendardi L; Gigliotti F; Scano G
    Respir Med; 2005 Nov; 99(11):1403-12. PubMed ID: 16210095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential inspiratory muscle pressure contributions to breathing during dynamic hyperinflation.
    Yan S; Kayser B
    Am J Respir Crit Care Med; 1997 Aug; 156(2 Pt 1):497-503. PubMed ID: 9279230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.