BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16390141)

  • 1. Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis.
    Zhang X; Lee I; Zhou X; Berdis AJ
    J Am Chem Soc; 2006 Jan; 128(1):143-9. PubMed ID: 16390141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of nonnatural nucleotides to probe the contributions of shape complementarity and pi-electron surface area during DNA polymerization.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13101-10. PubMed ID: 16185078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational attempts to optimize non-natural nucleotides for selective incorporation opposite an abasic site.
    Zhang X; Donnelly A; Lee I; Berdis AJ
    Biochemistry; 2006 Nov; 45(44):13293-303. PubMed ID: 17073450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue.
    Lee I; Berdis A
    Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a thymine dimer replicated via a transient abasic site intermediate? A comparative study using non-natural nucleotides.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Apr; 46(15):4486-98. PubMed ID: 17378586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potential chemotherapeutic strategy for the selective inhibition of promutagenic DNA synthesis by nonnatural nucleotides.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13111-21. PubMed ID: 16185079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the "A-rule" of translesion DNA synthesis: promutagenic DNA synthesis using modified nucleoside triphosphates.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Dec; 46(48):13752-61. PubMed ID: 17983244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis.
    Motea EA; Lee I; Berdis AJ
    Nucleic Acids Res; 2011 Mar; 39(4):1623-37. PubMed ID: 20952399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of non-natural nucleotides to probe template-independent DNA synthesis.
    Berdis AJ; McCutcheon D
    Chembiochem; 2007 Aug; 8(12):1399-408. PubMed ID: 17607682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese substantially alters the dynamics of translesion DNA synthesis.
    Hays H; Berdis AJ
    Biochemistry; 2002 Apr; 41(15):4771-8. PubMed ID: 11939771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and dynamics of translesion DNA synthesis catalyzed by the Escherichia coli Klenow fragment.
    Sheriff A; Motea E; Lee I; Berdis AJ
    Biochemistry; 2008 Aug; 47(33):8527-37. PubMed ID: 18652487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the contribution of base stacking during translesion DNA replication.
    Reineks EZ; Berdis AJ
    Biochemistry; 2004 Jan; 43(2):393-404. PubMed ID: 14717593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
    Cramer J; Rangam G; Marx A; Restle T
    Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorous base-pairing effects in a DNA polymerase active site.
    Lai JS; Kool ET
    Chemistry; 2005 May; 11(10):2966-71. PubMed ID: 15744767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases.
    Yasui M; Suenaga E; Koyama N; Masutani C; Hanaoka F; Gruz P; Shibutani S; Nohmi T; Hayashi M; Honma M
    J Mol Biol; 2008 Apr; 377(4):1015-23. PubMed ID: 18304575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of damaged DNA and dNTP substrates by the error-prone DNA polymerase X from African swine fever virus.
    Kumar S; Lamarche BJ; Tsai MD
    Biochemistry; 2007 Mar; 46(12):3814-25. PubMed ID: 17335287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 exonuclease-deficient DNA polymerase.
    Berdis AJ
    Biochemistry; 2001 Jun; 40(24):7180-91. PubMed ID: 11401565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.