BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16390422)

  • 1. Balancing the energy flow from captured light to biomass under fluctuating light conditions.
    Wagner H; Jakob T; Wilhelm C
    New Phytol; 2006; 169(1):95-108. PubMed ID: 16390422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
    Jakob T; Wagner H; Stehfest K; Wilhelm C
    J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates.
    Zhou L; Wu S; Gu W; Wang L; Wang J; Gao S; Wang G
    BMC Plant Biol; 2021 Apr; 21(1):164. PubMed ID: 33794787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum.
    Broddrick JT; Du N; Smith SR; Tsuji Y; Jallet D; Ware MA; Peers G; Matsuda Y; Dupont CL; Mitchell BG; Palsson BO; Allen AE
    New Phytol; 2019 May; 222(3):1364-1379. PubMed ID: 30636322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation.
    Wagner H; Jakob T; Lavaud J; Wilhelm C
    Photosynth Res; 2016 May; 128(2):151-61. PubMed ID: 26650230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum.
    Nagao R; Ueno Y; Yokono M; Shen JR; Akimoto S
    Photosynth Res; 2019 Sep; 141(3):355-365. PubMed ID: 30993504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
    Schellenberger Costa B; Sachse M; Jungandreas A; Bartulos CR; Gruber A; Jakob T; Kroth PG; Wilhelm C
    PLoS One; 2013; 8(9):e74451. PubMed ID: 24073211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum.
    Nymark M; Valle KC; Brembu T; Hancke K; Winge P; Andresen K; Johnsen G; Bones AM
    PLoS One; 2009 Nov; 4(11):e7743. PubMed ID: 19888450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon up-conversion increases biomass yield in Chlorella vulgaris.
    Menon KR; Jose S; Suraishkumar GK
    Biotechnol J; 2014 Dec; 9(12):1547-53. PubMed ID: 25155721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency.
    Fu W; Chaiboonchoe A; Khraiwesh B; Sultana M; Jaiswal A; Jijakli K; Nelson DR; Al-Hrout A; Baig B; Amin A; Salehi-Ashtiani K
    Sci Adv; 2017 Sep; 3(9):e1603096. PubMed ID: 28879232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.
    Woodworth BD; Mead RL; Nichols CN; Kolling DRJ
    Bioresour Technol; 2015 Mar; 179():159-164. PubMed ID: 25543540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.
    Langner U; Jakob T; Stehfest K; Wilhelm C
    Plant Cell Environ; 2009 Mar; 32(3):250-8. PubMed ID: 19054351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
    Lepetit B; GĂ©lin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J
    New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum.
    Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL
    Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum.
    Schellenberger Costa B; Jungandreas A; Jakob T; Weisheit W; Mittag M; Wilhelm C
    J Exp Bot; 2013 Jan; 64(2):483-93. PubMed ID: 23183259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms.
    Perkins R; Williamson C; Lavaud J; Mouget JL; Campbell DA
    Photosynth Res; 2018 Sep; 137(3):377-388. PubMed ID: 29663190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms that increase the growth efficiency of diatoms in low light.
    Fisher NL; Halsey KH
    Photosynth Res; 2016 Aug; 129(2):183-97. PubMed ID: 27312336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics of the diatom thylakoid membrane under different light conditions.
    Lepetit B; Goss R; Jakob T; Wilhelm C
    Photosynth Res; 2012 Mar; 111(1-2):245-57. PubMed ID: 21327535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].
    Wang S; Zhao SX; Wei CL; Yu SY; Shi JP; Zhang BG
    Huan Jing Ke Xue; 2014 Apr; 35(4):1462-7. PubMed ID: 24946603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism.
    Broddrick JT; Ware MA; Jallet D; Palsson BO; Peers G
    Plant J; 2022 Nov; 112(3):603-621. PubMed ID: 36053127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.