These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 16390425)
21. Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Staudt M; Lhoutellier L Tree Physiol; 2007 Oct; 27(10):1433-40. PubMed ID: 17669734 [TBL] [Abstract][Full Text] [Related]
22. Changes in monoterpene emission rates of Quercus ilex infested by aphids tended by native or invasive Lasius ant species. Paris CI; Llusia J; Peñuelas J J Chem Ecol; 2010 Jul; 36(7):689-98. PubMed ID: 20549328 [TBL] [Abstract][Full Text] [Related]
23. Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. Grote R New Phytol; 2007; 173(3):550-561. PubMed ID: 17244049 [TBL] [Abstract][Full Text] [Related]
24. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Juárez-López FJ; Escudero A; Mediavilla S Tree Physiol; 2008 Mar; 28(3):367-74. PubMed ID: 18171660 [TBL] [Abstract][Full Text] [Related]
25. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares. Welter S; Bracho-Nuñez A; Mir C; Zimmer I; Kesselmeier J; Lumaret R; Schnitzler JP; Staudt M Tree Physiol; 2012 Sep; 32(9):1082-91. PubMed ID: 22848089 [TBL] [Abstract][Full Text] [Related]
26. Photosynthetic responses to elevated CO(2) and O(3) in Quercus ilex leaves at a natural CO(2) spring. Paoletti E; Seufert G; Della Rocca G; Thomsen H Environ Pollut; 2007 Jun; 147(3):516-24. PubMed ID: 17045714 [TBL] [Abstract][Full Text] [Related]
27. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland. Olivier R; Staudt M; Lavoir AV; Ormeño E; Rizvi SH; Baldy V; Rivoal A; Greff S; Lecareux C; Fernandez C Environ Pollut; 2011 Apr; 159(4):963-9. PubMed ID: 21251740 [TBL] [Abstract][Full Text] [Related]
28. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Harley P; Eller A; Guenther A; Monson RK Oecologia; 2014 Sep; 176(1):35-55. PubMed ID: 25015120 [TBL] [Abstract][Full Text] [Related]
29. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Niinemets U; Cescatti A; Rodeghiero M; Tosens T Plant Cell Environ; 2006 Jun; 29(6):1159-78. PubMed ID: 17080941 [TBL] [Abstract][Full Text] [Related]
30. Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. Ali E; Hussain N; Shamsi IH; Jabeen Z; Siddiqui MH; Jiang LX J Zhejiang Univ Sci B; 2018 Feb.; 19(2):130-146. PubMed ID: 29405041 [TBL] [Abstract][Full Text] [Related]
31. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Jansen RM; Miebach M; Kleist E; van Henten EJ; Wildt J Plant Biol (Stuttg); 2009 Nov; 11(6):859-68. PubMed ID: 19796363 [TBL] [Abstract][Full Text] [Related]
32. Terpenoid emissions from Quercus robur. A case study of Galicia (NW Spain). Pérez-Rial D; Peñuelas J; López-Mahía P; Llusià J J Environ Monit; 2009 Jun; 11(6):1268-75. PubMed ID: 19513459 [TBL] [Abstract][Full Text] [Related]
33. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Blanch JS; Peñuelas J; Llusià J Physiol Plant; 2007 Oct; 131(2):211-25. PubMed ID: 18251893 [TBL] [Abstract][Full Text] [Related]
34. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Ozawa R; Arimura G; Takabayashi J; Shimoda T; Nishioka T Plant Cell Physiol; 2000 Apr; 41(4):391-8. PubMed ID: 10845451 [TBL] [Abstract][Full Text] [Related]
35. Foliar CO₂ in a holm oak forest subjected to 15 years of climate change simulation. Ogaya R; Llusià J; Barbeta A; Asensio D; Liu D; Alessio GA; Peñuelas J Plant Sci; 2014 Sep; 226():101-7. PubMed ID: 25113455 [TBL] [Abstract][Full Text] [Related]
36. Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Peñuelas J; Marino G; Llusia J; Morfopoulos C; Farré-Armengol G; Filella I Nat Commun; 2013; 4():2604. PubMed ID: 24108005 [TBL] [Abstract][Full Text] [Related]
37. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Taniguchi S; Hosokawa-Shinonaga Y; Tamaoki D; Yamada S; Akimitsu K; Gomi K Plant Cell Environ; 2014 Feb; 37(2):451-61. PubMed ID: 23889289 [TBL] [Abstract][Full Text] [Related]
38. Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Bertin N; Staudt M Oecologia; 1996 Sep; 107(4):456-462. PubMed ID: 28307387 [TBL] [Abstract][Full Text] [Related]
39. Impact of heat priming on heat shock responses in Origanum vulgare: Enhanced foliage photosynthetic tolerance and biphasic emissions of volatiles. Sulaiman HY; Liu B; Abiola YO; Kaurilind E; Niinemets Ü Plant Physiol Biochem; 2023 Mar; 196():567-579. PubMed ID: 36774912 [TBL] [Abstract][Full Text] [Related]
40. Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Tamogami S; Rakwal R; Agrawal GK Biochem Biophys Res Commun; 2008 Nov; 376(4):723-7. PubMed ID: 18812165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]