These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 16390433)
1. Partners in crime: phosphotransfer profiling identifies a multicomponent phosphorelay. Ryan KR Mol Microbiol; 2006 Jan; 59(2):361-3. PubMed ID: 16390433 [TBL] [Abstract][Full Text] [Related]
2. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Biondi EG; Skerker JM; Arif M; Prasol MS; Perchuk BS; Laub MT Mol Microbiol; 2006 Jan; 59(2):386-401. PubMed ID: 16390437 [TBL] [Abstract][Full Text] [Related]
3. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. Skerker JM; Prasol MS; Perchuk BS; Biondi EG; Laub MT PLoS Biol; 2005 Oct; 3(10):e334. PubMed ID: 16176121 [TBL] [Abstract][Full Text] [Related]
4. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. Ohta N; Newton A J Bacteriol; 2003 Aug; 185(15):4424-31. PubMed ID: 12867451 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. Xu Q; Carlton D; Miller MD; Elsliger MA; Krishna SS; Abdubek P; Astakhova T; Burra P; Chiu HJ; Clayton T; Deller MC; Duan L; Elias Y; Feuerhelm J; Grant JC; Grzechnik A; Grzechnik SK; Han GW; Jaroszewski L; Jin KK; Klock HE; Knuth MW; Kozbial P; Kumar A; Marciano D; McMullan D; Morse AT; Nigoghossian E; Okach L; Oommachen S; Paulsen J; Reyes R; Rife CL; Sefcovic N; Trame C; Trout CV; van den Bedem H; Weekes D; Hodgson KO; Wooley J; Deacon AM; Godzik A; Lesley SA; Wilson IA J Mol Biol; 2009 Jul; 390(4):686-98. PubMed ID: 19450606 [TBL] [Abstract][Full Text] [Related]
6. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. Hecht GB; Lane T; Ohta N; Sommer JM; Newton A EMBO J; 1995 Aug; 14(16):3915-24. PubMed ID: 7664732 [TBL] [Abstract][Full Text] [Related]
7. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Wang SP; Sharma PL; Schoenlein PV; Ely B Proc Natl Acad Sci U S A; 1993 Jan; 90(2):630-4. PubMed ID: 8421698 [TBL] [Abstract][Full Text] [Related]
8. Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Paul R; Jaeger T; Abel S; Wiederkehr I; Folcher M; Biondi EG; Laub MT; Jenal U Cell; 2008 May; 133(3):452-61. PubMed ID: 18455986 [TBL] [Abstract][Full Text] [Related]
9. A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria. Lori C; Kaczmarczyk A; de Jong I; Jenal U mBio; 2018 May; 9(3):. PubMed ID: 29789370 [TBL] [Abstract][Full Text] [Related]
10. Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays. Laub MT; Biondi EG; Skerker JM Methods Enzymol; 2007; 423():531-48. PubMed ID: 17609150 [TBL] [Abstract][Full Text] [Related]
11. Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus. Fioravanti A; Clantin B; Dewitte F; Lens Z; Verger A; Biondi EG; Villeret V Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep; 68(Pt 9):1025-9. PubMed ID: 22949187 [TBL] [Abstract][Full Text] [Related]
12. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Paul R; Weiser S; Amiot NC; Chan C; Schirmer T; Giese B; Jenal U Genes Dev; 2004 Mar; 18(6):715-27. PubMed ID: 15075296 [TBL] [Abstract][Full Text] [Related]
13. In vitro analysis of His-Asp phosphorelays in Aspergillus nidulans: the first direct biochemical evidence for the existence of His-Asp phosphotransfer systems in filamentous fungi. Azuma N; Kanamaru K; Matsushika A; Yamashino T; Mizuno T; Kato M; Kobayashi T Biosci Biotechnol Biochem; 2007 Oct; 71(10):2493-502. PubMed ID: 17928704 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Ausmees N; Jacobs-Wagner C Annu Rev Microbiol; 2003; 57():225-47. PubMed ID: 14527278 [TBL] [Abstract][Full Text] [Related]
15. Cell fate regulation governed by a repurposed bacterial histidine kinase. Childers WS; Xu Q; Mann TH; Mathews II; Blair JA; Deacon AM; Shapiro L PLoS Biol; 2014 Oct; 12(10):e1001979. PubMed ID: 25349992 [TBL] [Abstract][Full Text] [Related]
16. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. Li S; Ault A; Malone CL; Raitt D; Dean S; Johnston LH; Deschenes RJ; Fassler JS EMBO J; 1998 Dec; 17(23):6952-62. PubMed ID: 9843501 [TBL] [Abstract][Full Text] [Related]
17. Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis. Burton GJ; Hecht GB; Newton A J Bacteriol; 1997 Sep; 179(18):5849-53. PubMed ID: 9294444 [TBL] [Abstract][Full Text] [Related]
18. Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. Jacobs C; Hung D; Shapiro L Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4095-100. PubMed ID: 11274434 [TBL] [Abstract][Full Text] [Related]