BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16390461)

  • 1. Evidence for siderophore-dependent iron acquisition in group B streptococcus.
    Clancy A; Loar JW; Speziali CD; Oberg M; Heinrichs DE; Rubens CE
    Mol Microbiol; 2006 Jan; 59(2):707-21. PubMed ID: 16390461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.
    Ghysels B; Ochsner U; Möllman U; Heinisch L; Vasil M; Cornelis P; Matthijs S
    FEMS Microbiol Lett; 2005 May; 246(2):167-74. PubMed ID: 15899402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD.
    Krewulak KD; Shepherd CM; Vogel HJ
    Biometals; 2005 Aug; 18(4):375-86. PubMed ID: 16158230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions.
    Guan LL; Kanoh K; Kamino K
    Appl Environ Microbiol; 2001 Apr; 67(4):1710-7. PubMed ID: 11282625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron acquisition mechanisms of the Burkholderia cepacia complex.
    Thomas MS
    Biometals; 2007 Jun; 20(3-4):431-52. PubMed ID: 17295049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor.
    del Río ML; Navas J; Martín AJ; Gutiérrez CB; Rodríguez-Barbosa JI; Rodríguez Ferri EF
    Vet Res; 2006; 37(1):49-59. PubMed ID: 16336924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector.
    Michel L; González N; Jagdeep S; Nguyen-Ngoc T; Reimmann C
    Mol Microbiol; 2005 Oct; 58(2):495-509. PubMed ID: 16194235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of transposon TnphoZ for the identification of genes encoding exported proteins in Streptococcus agalactiae.
    Clancy A; Lee MH; Jones AL; Rubens CE
    FEMS Microbiol Lett; 2004 Dec; 241(2):257-64. PubMed ID: 15598541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siderophore production of a periplasmic transport binding protein kinase gene defective mutant of Magnetospirillum magneticum AMB-1.
    Calugay RJ; Okamura Y; Wahyudi AT; Takeyama H; Matsunaga T
    Biochem Biophys Res Commun; 2004 Oct; 323(3):852-7. PubMed ID: 15381078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron transport in Francisella in the absence of a recognizable TonB protein still requires energy generated by the proton motive force.
    Crosa LM; Crosa JH; Heffron F
    Biometals; 2009 Apr; 22(2):337-44. PubMed ID: 18946633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.
    Haas H; Schoeser M; Lesuisse E; Ernst JF; Parson W; Abt B; Winkelmann G; Oberegger H
    Biochem J; 2003 Apr; 371(Pt 2):505-13. PubMed ID: 12487628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2.
    Mariotti P; Malito E; Biancucci M; Lo Surdo P; Mishra RP; Nardi-Dei V; Savino S; Nissum M; Spraggon G; Grandi G; Bagnoli F; Bottomley MJ
    Biochem J; 2013 Feb; 449(3):683-93. PubMed ID: 23113737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O.
    Kim IH; Shim JI; Lee KE; Hwang W; Kim IJ; Choi SH; Kim KS
    J Microbiol Biotechnol; 2008 Jan; 18(1):35-42. PubMed ID: 18239413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis.
    Benson HP; Boncompagni E; Guerinot ML
    Mol Plant Microbe Interact; 2005 Sep; 18(9):950-9. PubMed ID: 16167765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin.
    Clarke TE; Braun V; Winkelmann G; Tari LW; Vogel HJ
    J Biol Chem; 2002 Apr; 277(16):13966-72. PubMed ID: 11805094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of the fhuC and fhuD genes involved in iron (III) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins.
    Burkhardt R; Braun V
    Mol Gen Genet; 1987 Aug; 209(1):49-55. PubMed ID: 2823072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel MFS transporter encoding gene in Fusarium verticillioides probably involved in iron-siderophore transport.
    López-Errasquín E; González-Jaén MT; Callejas C; Vázquez C
    Mycol Res; 2006 Sep; 110(Pt 9):1102-10. PubMed ID: 16938445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular iron utilization is regulated by putative siderophore transporter FgSit1 not by free iron transporter in Fusarium graminearum.
    Park YS; Kim TH; Chang HI; Sung HC; Yun CW
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1634-42. PubMed ID: 16750173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore-mediated iron acquisition in the staphylococci.
    Beasley FC; Heinrichs DE
    J Inorg Biochem; 2010 Mar; 104(3):282-8. PubMed ID: 19850350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.