BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16390870)

  • 1. Uncoupling proteasome peptidase and ATPase activities results in cytosolic release of an ER polytopic protein.
    Oberdorf J; Carlson EJ; Skach WR
    J Cell Sci; 2006 Jan; 119(Pt 2):303-13. PubMed ID: 16390870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation.
    Oberdorf J; Carlson EJ; Skach WR
    Biochemistry; 2001 Nov; 40(44):13397-405. PubMed ID: 11683650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoplasmic reticulum-associated degradation of mutant CFTR requires a guanine nucleotide-sensitive step.
    De Keukeleire B; Micoud J; Biard J; Benharouga M
    Int J Biochem Cell Biol; 2008; 40(9):1729-42. PubMed ID: 18280771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reticulocyte lysate as a model system to study endoplasmic reticulum membrane protein degradation.
    Carlson E; Bays N; David L; Skach WR
    Methods Mol Biol; 2005; 301():185-205. PubMed ID: 15917633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane.
    Xiong X; Chong E; Skach WR
    J Biol Chem; 1999 Jan; 274(5):2616-24. PubMed ID: 9915789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast.
    Enenkel C; Lehmann A; Kloetzel PM
    EMBO J; 1998 Nov; 17(21):6144-54. PubMed ID: 9799224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of membrane-associated proteasomes in WB rat liver epithelial cells.
    Khan MT; Joseph SK
    Arch Biochem Biophys; 2001 Jan; 385(1):99-107. PubMed ID: 11361031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro reconstitution of CFTR biogenesis and degradation.
    Oberdorf J; Skach WR
    Methods Mol Med; 2002; 70():295-310. PubMed ID: 11917531
    [No Abstract]   [Full Text] [Related]  

  • 9. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation.
    Carlson EJ; Pitonzo D; Skach WR
    EMBO J; 2006 Oct; 25(19):4557-66. PubMed ID: 16977321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved role of Caenorhabditis elegans CDC-48 in ER-associated protein degradation.
    Mouysset J; Kähler C; Hoppe T
    J Struct Biol; 2006 Oct; 156(1):41-9. PubMed ID: 16647269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells.
    Fuchs D; Berges C; Opelz G; Daniel V; Naujokat C
    J Cell Biochem; 2008 Jan; 103(1):270-83. PubMed ID: 17516511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of CFTR is predominantly cotranslational.
    Kleizen B; van Vlijmen T; de Jonge HR; Braakman I
    Mol Cell; 2005 Oct; 20(2):277-87. PubMed ID: 16246729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.
    Smith DM; Kafri G; Cheng Y; Ng D; Walz T; Goldberg AL
    Mol Cell; 2005 Dec; 20(5):687-98. PubMed ID: 16337593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The forced aggresome formation of a bovine anion exchanger 1 (AE1) mutant through association with δF508-cystic fibrosis transmembrane conductance regulator upon proteasome inhibition in HEK293 cells.
    Adachi H; Kurooka T; Otsu W; Inaba M
    Jpn J Vet Res; 2010 Aug; 58(2):101-10. PubMed ID: 20715420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 26S proteasome: ubiquitin-mediated proteolysis in the tunnel.
    Kierszenbaum AL
    Mol Reprod Dev; 2000 Oct; 57(2):109-10. PubMed ID: 10984410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
    Farinha CM; Amaral MD
    Mol Cell Biol; 2005 Jun; 25(12):5242-52. PubMed ID: 15923638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins.
    Fleig L; Bergbold N; Sahasrabudhe P; Geiger B; Kaltak L; Lemberg MK
    Mol Cell; 2012 Aug; 47(4):558-69. PubMed ID: 22795130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622.
    Norez C; Bilan F; Kitzis A; Mettey Y; Becq F
    J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL; Ramjeesingh M; Cheung JC; Huan LJ; Bear CE
    Biochem J; 2007 Jan; 401(2):581-6. PubMed ID: 16989640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.