These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 16391110)
1. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities. Lin NC; Abramovitch RB; Kim YJ; Martin GB Appl Environ Microbiol; 2006 Jan; 72(1):702-12. PubMed ID: 16391110 [TBL] [Abstract][Full Text] [Related]
2. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato. Lin NC; Martin GB Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. Xiao F; He P; Abramovitch RB; Dawson JE; Nicholson LK; Sheen J; Martin GB Plant J; 2007 Nov; 52(4):595-614. PubMed ID: 17764515 [TBL] [Abstract][Full Text] [Related]
4. An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Lin NC; Martin GB Mol Plant Microbe Interact; 2005 Jan; 18(1):43-51. PubMed ID: 15672817 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas syringae type III effector AvrPtoB is phosphorylated in plant cells on serine 258, promoting its virulence activity. Xiao F; Giavalisco P; Martin GB J Biol Chem; 2007 Oct; 282(42):30737-44. PubMed ID: 17711844 [TBL] [Abstract][Full Text] [Related]
6. Two virulence determinants of type III effector AvrPto are functionally conserved in diverse Pseudomonas syringae pathovars. Nguyen HP; Yeam I; Angot A; Martin GB New Phytol; 2010 Sep; 187(4):969-982. PubMed ID: 20122130 [TBL] [Abstract][Full Text] [Related]
7. Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a is due to a defective E3 ubiquitin ligase domain in avrptobb728a. Chien CF; Mathieu J; Hsu CH; Boyle P; Martin GB; Lin NC Mol Plant Microbe Interact; 2013 Apr; 26(4):387-97. PubMed ID: 23252461 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector. Cheng W; Munkvold KR; Gao H; Mathieu J; Schwizer S; Wang S; Yan YB; Wang J; Martin GB; Chai J Cell Host Microbe; 2011 Dec; 10(6):616-26. PubMed ID: 22169508 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the complex between Pseudomonas effector AvrPtoB and the tomato Pto kinase reveals both a shared and a unique interface compared with AvrPto-Pto. Dong J; Xiao F; Fan F; Gu L; Cang H; Martin GB; Chai J Plant Cell; 2009 Jun; 21(6):1846-59. PubMed ID: 19509331 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas syringae pv. tomato Strains from New York Exhibit Virulence Attributes Intermediate Between Typical Race 0 and Race 1 Strains. Kraus CM; Mazo-Molina C; Smart CD; Martin GB Plant Dis; 2017 Aug; 101(8):1442-1448. PubMed ID: 30678591 [TBL] [Abstract][Full Text] [Related]
11. Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Kunkeaw S; Tan S; Coaker G Mol Plant Microbe Interact; 2010 Apr; 23(4):415-24. PubMed ID: 20192829 [TBL] [Abstract][Full Text] [Related]
12. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Zeng L; Velásquez AC; Munkvold KR; Zhang J; Martin GB Plant J; 2012 Jan; 69(1):92-103. PubMed ID: 21880077 [TBL] [Abstract][Full Text] [Related]
13. Genetic and molecular requirements for function of the Pto/Prf effector recognition complex in tomato and Nicotiana benthamiana. Balmuth A; Rathjen JP Plant J; 2007 Sep; 51(6):978-90. PubMed ID: 17635766 [TBL] [Abstract][Full Text] [Related]
14. Natural Variation in Tomato Reveals Differences in the Recognition of AvrPto and AvrPtoB Effectors from Pseudomonas syringae. Kraus CM; Munkvold KR; Martin GB Mol Plant; 2016 May; 9(5):639-649. PubMed ID: 26993968 [TBL] [Abstract][Full Text] [Related]
15. Host inhibition of a bacterial virulence effector triggers immunity to infection. Ntoukakis V; Mucyn TS; Gimenez-Ibanez S; Chapman HC; Gutierrez JR; Balmuth AL; Jones AM; Rathjen JP Science; 2009 May; 324(5928):784-7. PubMed ID: 19423826 [TBL] [Abstract][Full Text] [Related]
16. AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. Abramovitch RB; Martin GB FEMS Microbiol Lett; 2005 Apr; 245(1):1-8. PubMed ID: 15796972 [TBL] [Abstract][Full Text] [Related]
17. Effector-triggered immunity mediated by the Pto kinase. Oh CS; Martin GB Trends Plant Sci; 2011 Mar; 16(3):132-40. PubMed ID: 21112235 [TBL] [Abstract][Full Text] [Related]
18. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Kim YJ; Lin NC; Martin GB Cell; 2002 May; 109(5):589-98. PubMed ID: 12062102 [TBL] [Abstract][Full Text] [Related]
19. Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. Chang JH; Tai YS; Bernal AJ; Lavelle DT; Staskawicz BJ; Michelmore RW Mol Plant Microbe Interact; 2002 Mar; 15(3):281-91. PubMed ID: 11952131 [TBL] [Abstract][Full Text] [Related]
20. Natural variation in the Pto pathogen resistance gene within species of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles. Rose LE; Langley CH; Bernal AJ; Michelmore RW Genetics; 2005 Sep; 171(1):345-57. PubMed ID: 15944360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]