BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16391669)

  • 1. Mapping of QTLs for androgenetic response based on a molecular genetic map of x Triticosecale Wittmack.
    González JM; Muñiz LM; Jouve N
    Genome; 2005 Dec; 48(6):999-1009. PubMed ID: 16391669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic map of triticale compiling DArT, SSR, and AFLP markers.
    Tyrka M; Bednarek PT; Kilian A; Wędzony M; Hura T; Bauer E
    Genome; 2011 May; 54(5):391-401. PubMed ID: 21561288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map.
    Alheit KV; Reif JC; Maurer HP; Hahn V; Weissmann EA; Miedaner T; Würschum T
    BMC Genomics; 2011 Jul; 12():380. PubMed ID: 21798064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait loci associated with androgenic responsiveness in triticale (×Triticosecale Wittm.) anther culture.
    Krzewska M; Czyczyło-Mysza I; Dubas E; Gołębiowska-Pikania G; Golemiec E; Stojałowski S; Chrupek M; Zur I
    Plant Cell Rep; 2012 Nov; 31(11):2099-108. PubMed ID: 22865110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat.
    Suenaga K; Khairallah M; William HM; Hoisington DA
    Genome; 2005 Feb; 48(1):65-75. PubMed ID: 15729398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L.
    Song X; Wang K; Guo W; Zhang J; Zhang T
    Genome; 2005 Jun; 48(3):378-90. PubMed ID: 16121235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers.
    Choi JK; Sa KJ; Park DH; Lim SE; Ryu SH; Park JY; Park KJ; Rhee HI; Lee M; Lee JK
    Genes Genomics; 2019 Jun; 41(6):667-678. PubMed ID: 30953340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A doubled haploid rye linkage map with a QTL affecting α-amylase activity.
    Tenhola-Roininen T; Kalendar R; Schulman AH; Tanhuanpää P
    J Appl Genet; 2011 Aug; 52(3):299-304. PubMed ID: 21286900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat.
    Heidari B; Sayed-Tabatabaei BE; Saeidi G; Kearsey M; Suenaga K
    Genome; 2011 Jun; 54(6):517-27. PubMed ID: 21635161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton.
    Adawy SS; Diab AA; Atia MA; Hussein EH
    GM Crops Food; 2013; 4(1):36-49. PubMed ID: 23333856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties.
    Zhang KP; Zhao L; Tian JC; Chen GF; Jiang XL; Liu B
    J Integr Plant Biol; 2008 Aug; 50(8):941-50. PubMed ID: 18713343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.).
    Bolibok H; Gruszczyńska A; Hromada-Judycka A; Rakoczy-Trojanowska M
    Cell Mol Biol Lett; 2007; 12(4):523-35. PubMed ID: 17579815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration genetic linkage map construction and several potential QTLs mapping of Chinese shrimp (Fenneropenaeus chinensis) based on three types of molecular markers.
    Wang W; Tian Y; Kong J; Li X; Liu X; Yang C
    Genetika; 2012 Apr; 48(4):508-21. PubMed ID: 22730771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum tolerance association mapping in triticale.
    Niedziela A; Bednarek PT; Cichy H; Budzianowski G; Kilian A; Anioł A
    BMC Genomics; 2012 Feb; 13():67. PubMed ID: 22330691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack).
    Niedziela A; Bednarek PT; Labudda M; Mańkowski DR; Anioł A
    J Appl Genet; 2014 Feb; 55(1):1-14. PubMed ID: 24222435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of the Messapia x dicoccoides linkage map of Triticum turgidum (L.) Thell.
    Blanco A; Simeone R; Cenci A; Gadaleta A; Tanzarella OA; Porceddu E; Salvi S; Tuberosa R; Figliuolo G; Spagnoletti P; Röder MS; Korzun V
    Cell Mol Biol Lett; 2004; 9(3):529-41. PubMed ID: 15332129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers.
    Pradhan AK; Gupta V; Mukhopadhyay A; Arumugam N; Sodhi YS; Pental D
    Theor Appl Genet; 2003 Feb; 106(4):607-14. PubMed ID: 12595988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat.
    Sourdille P; Cadalen T; Guyomarc'h H; Snape JW; Perretant MR; Charmet G; Boeuf C; Bernard S; Bernard M
    Theor Appl Genet; 2003 Feb; 106(3):530-8. PubMed ID: 12589554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population.
    Sourdille P; Snape JW; Cadalen T; Charmet G; Nakata N; Bernard S; Bernard M
    Genome; 2000 Jun; 43(3):487-94. PubMed ID: 10902713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers.
    Hashizume T; Shimamoto I; Hirai M
    Theor Appl Genet; 2003 Mar; 106(5):779-85. PubMed ID: 12647050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.