These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16391712)

  • 1. Peripheral pacemakers and patterns of slow wave propagation in the canine small intestine in vivo.
    Lammers WJ; Ver Donck L; Schuurkes JA; Stephen B
    Can J Physiol Pharmacol; 2005 Nov; 83(11):1031-43. PubMed ID: 16391712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal and circumferential spike patches in the canine small intestine in vivo.
    Lammers WJ; Donck LV; Schuurkes JA; Stephen B
    Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G1014-27. PubMed ID: 12842824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and propagation of individual slow waves along the intact feline small intestine.
    Lammers WJ; Stephen B
    Exp Physiol; 2008 Mar; 93(3):334-46. PubMed ID: 18156170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal coupling between slow waves and pendular contractions.
    Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G898-903. PubMed ID: 16020658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarities and differences in the propagation of slow waves and peristaltic waves.
    Lammers WJ; Stephen B; Slack JR
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G778-86. PubMed ID: 12181194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling slow wave activity in the small intestine.
    Lin AS; Buist ML; Smith NP; Pullan AJ
    J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cholinergic stimulation and of nucleoside transport inhibition on spikes and spike patches in the canine small intestine in vivo.
    Lammers WJ; Ver Donck L; Schuurkes JA; Smets D; Stephen B
    Eur J Pharmacol; 2007 Jul; 568(1-3):234-41. PubMed ID: 17531971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STW 5 (Iberogast) and its individual herbal components modulate intestinal electrophysiology of mice.
    Sibaev A; Yuece B; Kelber O; Weiser D; Schirra J; Göke B; Allescher HD; Storr M
    Phytomedicine; 2006; 13 Suppl 5():80-9. PubMed ID: 16713219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping.
    Cherian Abraham A; Cheng LK; Angeli TR; Alighaleh S; Paskaranandavadivel N
    Neurogastroenterol Motil; 2019 Sep; 31(9):e13670. PubMed ID: 31250520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation velocities and frequencies of contractions along canine small intestine.
    Siegle ML; Bühner S; Schemann M; Schmid HR; Ehrlein HJ
    Am J Physiol; 1990 May; 258(5 Pt 1):G738-44. PubMed ID: 2334000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine.
    Seerden TC; Lammers WJ; De Winter BY; De Man JG; Pelckmans PA
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1043-51. PubMed ID: 16099869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of spike burst spread and flow in the canine small intestine.
    Summers RW; Dusdieker NS
    Gastroenterology; 1981 Oct; 81(4):742-50. PubMed ID: 7262518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine.
    Wang XY; Lammers WJ; Bercik P; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2005 Sep; 289(3):G539-49. PubMed ID: 15860643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.
    Gwynne RM; Bornstein JC
    Am J Physiol Gastrointest Liver Physiol; 2007 Apr; 292(4):G1162-72. PubMed ID: 17218474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation of small intestinal electrical control activity.
    Sarna SK; Daniel EE
    Gastroenterology; 1975 Sep; 69(3):660-7. PubMed ID: 1158084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Gastroenterology; 2008 Nov; 135(5):1601-11. PubMed ID: 18713627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in the intestinal slow-wave frequency below the transection through electrical stimulation.
    Papasova M; Velkova V; Atanassova E
    Acta Physiol Pharmacol Bulg; 1977; 3(4):3-11. PubMed ID: 614764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enteric mechanisms of initiation of migrating myoelectric complexes in dogs.
    Sarna S; Condon RE; Cowles V
    Gastroenterology; 1983 Apr; 84(4):814-22. PubMed ID: 6825992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.