These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16391767)

  • 1. Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
    Belitsky JM; Nelson A; Stoddart JF
    Org Biomol Chem; 2006 Jan; 4(2):250-6. PubMed ID: 16391767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes.
    Belitsky JM; Nelson A; Hernandez JD; Baum LG; Stoddart JF
    Chem Biol; 2007 Oct; 14(10):1140-51. PubMed ID: 17961826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1.
    Nelson A; Belitsky JM; Vidal S; Joiner CS; Baum LG; Stoddart JF
    J Am Chem Soc; 2004 Sep; 126(38):11914-22. PubMed ID: 15382926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles.
    Wu YL; Li J
    Angew Chem Int Ed Engl; 2009; 48(21):3842-5. PubMed ID: 19378311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyco-pseudopolyrotaxanes: carbohydrate wheels threaded on a polymer string and their inhibition of bacterial adhesion.
    Kim J; Ahn Y; Park KM; Lee DW; Kim K
    Chemistry; 2010 Oct; 16(40):12168-73. PubMed ID: 20859967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-Orbitrap.
    Przybylski C; Jarroux N
    Anal Chem; 2011 Nov; 83(22):8460-7. PubMed ID: 21958205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests.
    Miyauchi M; Harada A
    J Am Chem Soc; 2004 Sep; 126(37):11418-9. PubMed ID: 15366870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic multivalent lactosides displayed on cyclodextrin beads dangling from polymer strings.
    Nelson A; Stoddart JF
    Org Lett; 2003 Oct; 5(21):3783-6. PubMed ID: 14535709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions.
    Cacialli F; Wilson JS; Michels JJ; Daniel C; Silva C; Friend RH; Severin N; Samorì P; Rabe JP; O'Connell MJ; Taylor PN; Anderson HL
    Nat Mater; 2002 Nov; 1(3):160-4. PubMed ID: 12618803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot synthesis of a polyrotaxane via selective threading of a PEI-b-PEG-b-PEI copolymer.
    Choi HS; Ooya T; Yui N
    Macromol Biosci; 2006 Jun; 6(6):420-4. PubMed ID: 16761273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Star-pseudopolyrotaxane organized in nanoplatelets for poly(ε-caprolactone)-based nanofibrous scaffolds with enhanced surface reactivity.
    Oster M; Hébraud A; Gallet S; Lapp A; Pollet E; Avérous L; Schlatter G
    Macromol Rapid Commun; 2015 Feb; 36(3):292-7. PubMed ID: 25424726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes.
    Ke CF; Hou S; Zhang HY; Liu Y; Yang K; Feng XZ
    Chem Commun (Camb); 2007 Aug; (32):3374-6. PubMed ID: 18019503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular polymers based on cyclodextrins for drug and gene delivery.
    Li JJ; Zhao F; Li J
    Adv Biochem Eng Biotechnol; 2011; 125():207-49. PubMed ID: 20839082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoreversible sol-gel transition of an aqueous solution of polyrotaxane composed of highly methylated alpha-cyclodextrin and polyethylene glycol.
    Kidowaki M; Zhao C; Kataoka T; Ito K
    Chem Commun (Camb); 2006 Oct; (39):4102-3. PubMed ID: 17024262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explanation for the electrophoresis behaviour of DNA condensation induced by pseudopolyrotaxane of different lengths.
    Hou S; Yang K; Feng XZ
    Electrophoresis; 2008 Nov; 29(21):4391-8. PubMed ID: 19016566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.