These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 16392123)
1. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. Saldaña L; Barranco V; García-Alonso MC; Vallés G; Escudero ML; Munuera L; Vilaboa N J Biomed Mater Res A; 2006 May; 77(2):220-9. PubMed ID: 16392123 [TBL] [Abstract][Full Text] [Related]
2. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
3. Osteoblast response to thermally oxidized Ti6Al4V alloy. Saldaña L; Vilaboa N; Vallés G; González-Cabrero J; Munuera L J Biomed Mater Res A; 2005 Apr; 73(1):97-107. PubMed ID: 15704115 [TBL] [Abstract][Full Text] [Related]
4. [Standardized testing of bone implant surfaces with an osteoblast cell culture cyste. III. PVD hard coatings and Ti6Al4V]. Steinert A; Hendrich C; Merklein F; Rader CP; Schütze N; Thull R; Eulert J Biomed Tech (Berl); 2000 Dec; 45(12):349-55. PubMed ID: 11194641 [TBL] [Abstract][Full Text] [Related]
5. Osteoblast response to plasma-spray porous Ti6Al4V coating on substrates of identical alloy. Saldaña L; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2006 Jun; 77(3):608-17. PubMed ID: 16506177 [TBL] [Abstract][Full Text] [Related]
6. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408 [TBL] [Abstract][Full Text] [Related]
7. Nitric acid passivation does not affect in vitro biocompatibility of titanium. Faria AC; Beloti MM; Rosa AL Int J Oral Maxillofac Implants; 2003; 18(6):820-5. PubMed ID: 14696657 [TBL] [Abstract][Full Text] [Related]
8. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. Ponader S; Vairaktaris E; Heinl P; Wilmowsky CV; Rottmair A; Körner C; Singer RF; Holst S; Schlegel KA; Neukam FW; Nkenke E J Biomed Mater Res A; 2008 Mar; 84(4):1111-9. PubMed ID: 17685409 [TBL] [Abstract][Full Text] [Related]
9. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
10. Synergistic interaction of topographic features in the production of bone-like nodules on Ti surfaces by rat osteoblasts. Wieland M; Textor M; Chehroudi B; Brunette DM Biomaterials; 2005 Apr; 26(10):1119-30. PubMed ID: 15451631 [TBL] [Abstract][Full Text] [Related]
11. Nanocomposite Ti/hydrocarbon plasma polymer films from reactive magnetron sputtering as growth support for osteoblast-like and endothelial cells. Grinevich A; Bacakova L; Choukourov A; Boldyryeva H; Pihosh Y; Slavinska D; Noskova L; Skuciova M; Lisa V; Biederman H J Biomed Mater Res A; 2009 Mar; 88(4):952-66. PubMed ID: 18384161 [TBL] [Abstract][Full Text] [Related]
12. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
13. Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Ko HC; Han JS; Bächle M; Jang JH; Shin SW; Kim DJ Dent Mater; 2007 Nov; 23(11):1349-55. PubMed ID: 17197017 [TBL] [Abstract][Full Text] [Related]
14. Quantitative assessment of the response of osteoblast- and macrophage-like cells to particles of Ni-free Fe-base alloys. Ciapetti G; González-Carrasco JL; Savarino L; Montealegre MA; Pagani S; Baldini N Biomaterials; 2005 Mar; 26(8):849-59. PubMed ID: 15353196 [TBL] [Abstract][Full Text] [Related]
15. Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. Park BS; Heo SJ; Kim CS; Oh JE; Kim JM; Lee G; Park WH; Chung CP; Min BM J Biomed Mater Res A; 2005 Sep; 74(4):640-51. PubMed ID: 16015642 [TBL] [Abstract][Full Text] [Related]
16. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514 [TBL] [Abstract][Full Text] [Related]
17. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135 [TBL] [Abstract][Full Text] [Related]
18. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Spriano S; Bosetti M; Bronzoni M; Vernè E; Maina G; Bergo V; Cannas M Biomaterials; 2005 Apr; 26(11):1219-29. PubMed ID: 15475051 [TBL] [Abstract][Full Text] [Related]
19. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
20. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]