These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
885 related articles for article (PubMed ID: 16392130)
1. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
2. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. Wang R; Tao J; Yu B; Dai L J Prosthet Dent; 2014 Apr; 111(4):318-26. PubMed ID: 24360009 [TBL] [Abstract][Full Text] [Related]
3. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
4. Reinforcement of bone cement using zirconia fibers with and without acrylic coating. Kotha S; Li C; Schmid S; Mason J J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160 [TBL] [Abstract][Full Text] [Related]
5. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666 [TBL] [Abstract][Full Text] [Related]
6. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement. Persson C; Baleani M; Guandalini L; Tigani D; Viceconti M Acta Orthop; 2006 Aug; 77(4):617-21. PubMed ID: 16929439 [TBL] [Abstract][Full Text] [Related]
7. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications. Gbureck U; Grübel S; Thull R; Barralet JE Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticulate fillers improve the mechanical strength of bone cement. Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848 [TBL] [Abstract][Full Text] [Related]
9. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. Khaled SM; Charpentier PA; Rizkalla AS J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779 [TBL] [Abstract][Full Text] [Related]
10. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
11. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement. Belkoff SM; Sanders JC; Jasper LE J Biomed Mater Res; 2002; 63(4):396-9. PubMed ID: 12115746 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394 [TBL] [Abstract][Full Text] [Related]
13. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. Ormsby R; McNally T; Mitchell C; Dunne N J Mater Sci Mater Med; 2010 Aug; 21(8):2287-92. PubMed ID: 20091100 [TBL] [Abstract][Full Text] [Related]
14. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Ormsby R; McNally T; O'Hare P; Burke G; Mitchell C; Dunne N Acta Biomater; 2012 Mar; 8(3):1201-12. PubMed ID: 22023747 [TBL] [Abstract][Full Text] [Related]
15. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Kurtz SM; Villarraga ML; Zhao K; Edidin AA Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the minimum number of test specimens for fatigue testing of acrylic bone cement. Lewis G; Sadhasivini A Biomaterials; 2004 Aug; 25(18):4425-32. PubMed ID: 15046933 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV. Lewis G; Janna S Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440 [TBL] [Abstract][Full Text] [Related]
18. Innovations in acrylic bone cement and application equipment. Kindt-Larsen T; Smith DB; Jensen JS J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541 [TBL] [Abstract][Full Text] [Related]
19. Fracture toughness of steel-fiber-reinforced bone cement. Kotha SP; Li C; Schmid SR; Mason JJ J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326 [TBL] [Abstract][Full Text] [Related]
20. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]