These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16392140)

  • 1. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
    Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM
    J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolds for bone restoration from cuttlefish.
    Rocha JH; Lemos AF; Agathopoulos S; Valério P; Kannan S; Oktar FN; Ferreira JM
    Bone; 2005 Dec; 37(6):850-7. PubMed ID: 16153899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones.
    Kannan S; Rocha JH; Agathopoulos S; Ferreira JM
    Acta Biomater; 2007 Mar; 3(2):243-9. PubMed ID: 17127113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite formation from cuttlefish bones: kinetics.
    Ivankovic H; Tkalcec E; Orlic S; Ferrer GG; Schauperl Z
    J Mater Sci Mater Med; 2010 Oct; 21(10):2711-22. PubMed ID: 20567885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization.
    Battistella E; Mele S; Foltran I; Lesci IG; Roveri N; Sabatino P; Rimondini L
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):99-106. PubMed ID: 22798241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of highly porous hydroxyapatite from cuttlefish bone.
    Ivankovic H; Gallego Ferrer G; Tkalcec E; Orlic S; Ivankovic M
    J Mater Sci Mater Med; 2009 May; 20(5):1039-46. PubMed ID: 19132509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones.
    Tkalčec E; Popović J; Orlić S; Milardović S; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():578-86. PubMed ID: 25063156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering.
    Dellinger JG; Cesarano J; Jamison RD
    J Biomed Mater Res A; 2007 Aug; 82(2):383-94. PubMed ID: 17295231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.