These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16392580)

  • 21. Insights on α-Glucose Biosensors/Carriers Based on Boron-Nitride Nanomaterials from an Atomistic and Electronic Point of View.
    Palomino-Asencio L; Chigo-Anota E; García-Hernández E
    Chemphyschem; 2022 Dec; 23(24):e202200310. PubMed ID: 35945140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of a thione derivative on carbon, AlN, and BN nanotubes: a detailed DFT and MD investigation.
    Al-Otaibi JS; Shabeer M; Mary YS; Mary YS; Thomas R
    J Mol Model; 2022 Jun; 28(7):181. PubMed ID: 35668144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes.
    Yang FH; Lachawiec AJ; Yang RT
    J Phys Chem B; 2006 Mar; 110(12):6236-44. PubMed ID: 16553439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes.
    Cheng H; Cooper AC; Pez GP; Kostov MK; Piotrowski P; Stuart SJ
    J Phys Chem B; 2005 Mar; 109(9):3780-6. PubMed ID: 16851425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ab initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.
    Mashapa MG; Chetty N; Ray SS
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7030-6. PubMed ID: 23035429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium.
    Panigrahi P; Kumar A; Bae H; Lee H; Ahuja R; Hussain T
    Phys Chem Chem Phys; 2020 Jul; 22(27):15675-15682. PubMed ID: 32618312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) due to the impurity of a single carbon atom and temperature changes.
    Yadollahi AM; Niazian MR; Khodadadi A
    J Mol Graph Model; 2023 Jul; 122():108499. PubMed ID: 37116335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes.
    Lee Y; Kwon DG; Kim G; Kwon YK
    Phys Chem Chem Phys; 2017 Mar; 19(11):8076-8081. PubMed ID: 28265622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube.
    Liew KM; Yuan J
    Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials.
    Li M; Li Y; Zhou Z; Shen P; Chen Z
    Nano Lett; 2009 May; 9(5):1944-8. PubMed ID: 19341259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous Boron Nitride with Tunable Pore Size.
    Dai J; Wu X; Yang J; Zeng XC
    J Phys Chem Lett; 2014 Jan; 5(2):393-8. PubMed ID: 26270717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.
    Rimola A; Sodupe M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development.
    Han SS; Kang JK; Lee HM; van Duin AC; Goddard WA
    J Chem Phys; 2005 Sep; 123(11):114703. PubMed ID: 16392579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuum modelling for carbon and boron nitride nanostructures.
    Thamwattana N; Hill JM
    J Phys Condens Matter; 2007 Oct; 19(40):406209. PubMed ID: 22049108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biophysical assessment of amantadine and SDS surfactant mixture onto boron nitride nanotube: a molecular dynamics investigation.
    Shamizad F; Habibzadeh Mashatooki M; Ghalami-Choobar B
    J Mol Model; 2023 Oct; 29(11):333. PubMed ID: 37807012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Titanium-decorated boron nitride nanotubes for hydrogen storage: a multiscale theoretical investigation.
    Mananghaya MR
    Nanoscale; 2019 Aug; 11(34):16052-16062. PubMed ID: 31432858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hydrogen storage mechanism in single-walled carbon nanotubes.
    Lee SM; An KH; Lee YH; Seifert G; Frauenheim T
    J Am Chem Soc; 2001 May; 123(21):5059-63. PubMed ID: 11457335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.
    Esrafili MD; Behzadi H
    J Mol Model; 2013 Jun; 19(6):2375-82. PubMed ID: 23408252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.