These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16392585)

  • 1. Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.
    Tablero C
    J Chem Phys; 2005 Sep; 123(11):114709. PubMed ID: 16392585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoelectronic properties analysis of Ti-substituted GaP.
    Tablero C
    J Chem Phys; 2005 Nov; 123(18):184703. PubMed ID: 16292917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation and nuclear distortion effects of Cr-substituted ZnSe.
    Tablero C
    J Chem Phys; 2007 Apr; 126(16):164703. PubMed ID: 17477620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and magnetic properties of Ti(2)O(3), Cr(2)O(3), and Fe(2)O(3) calculated by the screened exchange hybrid density functional.
    Guo Y; Clark SJ; Robertson J
    J Phys Condens Matter; 2012 Aug; 24(32):325504, 1-8. PubMed ID: 22809821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.
    Palacios P; Aguilera I; Sánchez K; Conesa JC; Wahnón P
    Phys Rev Lett; 2008 Jul; 101(4):046403. PubMed ID: 18764346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. V-doped SnS2: a new intermediate band material for a better use of the solar spectrum.
    Wahnón P; Conesa JC; Palacios P; Lucena R; Aguilera I; Seminovski Y; Fresno F
    Phys Chem Chem Phys; 2011 Dec; 13(45):20401-7. PubMed ID: 21996706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the Hubbard U on density functional-based predictions of BiFeO
    Shenton JK; Bowler DR; Cheah WL
    J Phys Condens Matter; 2017 Nov; 29(44):445501. PubMed ID: 28853713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Cr-doping on the electronic structure and work function of α-Fe
    Li X; Chen L; Liu H; Mi Z; Shi C; Qiao L
    Phys Chem Chem Phys; 2017 Oct; 19(38):26248-26254. PubMed ID: 28932834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure, magnetic properties, and mixed valence character of Ce
    Ibrahim IAM
    J Comput Chem; 2017 Nov; 38(29):2475-2480. PubMed ID: 28766732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning band structure and electronic transport properties of ZrN nanotube--a first-principles investigation.
    Chandiramouli R; Nagarajan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():1018-26. PubMed ID: 25459628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the orbital self-interaction in both strongly and weakly correlated systems.
    Tablero C
    J Chem Phys; 2009 Feb; 130(5):054903. PubMed ID: 19206991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain and electric field co-modulation of electronic properties of bilayer boronitrene.
    Wang RN; Yang M; Dong GY; Wang SF; Fu GS; Wang JL
    J Phys Condens Matter; 2016 Feb; 28(5):055302. PubMed ID: 26760530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, electronic and magnetic properties of weakly correlated metal Sr
    Dhawan R; Balasubramanian P; Nautiyal T
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34700313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hubbard physics in the PAW GW approximation.
    Booth JM; Drumm DW; Casey PS; Smith JS; Russo SP
    J Chem Phys; 2016 Jun; 144(24):244110. PubMed ID: 27369500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction pathways in the solid state and the Hubbard U correction.
    Brown JJ; Page AJ
    J Chem Phys; 2021 Mar; 154(12):124121. PubMed ID: 33810657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring function activated chlorins using MCD spectroscopy and DFT methods: design of a chlorin with a remarkably intense, red Q band.
    Zhang A; Stillman MJ
    Phys Chem Chem Phys; 2018 May; 20(18):12470-12482. PubMed ID: 29700537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the exact exchange potential method for half metallic intermediate band alloy semiconductor.
    Fernández JJ; Tablero C; Wahnón P
    J Chem Phys; 2004 Jun; 120(22):10780-5. PubMed ID: 15268104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.