These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16392590)

  • 1. Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature.
    Zhang G; Li B
    J Chem Phys; 2005 Sep; 123(11):114714. PubMed ID: 16392590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality and Diameter Influence on Thermal Conductivity of Single-Walled Carbon Nanotubes.
    Feng Y; Zhu J; Tang DW
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3092-7. PubMed ID: 26353541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Distribution and Thermal Conductivity Measurements of Chirality-Assigned Single-Walled Carbon Nanotubes by Photoluminescence Imaging Spectroscopy.
    Yoshino K; Kato T; Saito Y; Shitaba J; Hanashima T; Nagano K; Chiashi S; Homma Y
    ACS Omega; 2018 Apr; 3(4):4352-4356. PubMed ID: 31458660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intriguing thermal conductivity of ice nanotubes.
    Guo Z; Zhang D; Zhai Y; Gong XG
    Nanotechnology; 2010 Jul; 21(28):285706. PubMed ID: 20585161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.
    Yue SY; Ouyang T; Hu M
    Sci Rep; 2015 Oct; 5():15440. PubMed ID: 26490342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of TiO
    Yang L; Wang CZ; Lin S; Chen T; Cao Y; Zhang P; Liu X
    J Phys Condens Matter; 2019 Feb; 31(5):055302. PubMed ID: 30523941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon.
    Chen Y; Lukes JR; Li D; Yang J; Wu Y
    J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of tube length, radius and chirality on the buckling behavior of single-walled carbon nanotubes filled with copper atoms.
    Wang L; Zhang HW; Deng XM
    J Phys Condens Matter; 2009 Jul; 21(30):305301. PubMed ID: 21828546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of longitudinal isotope substitution on the thermal conductivity of carbon nanotubes: results of nonequilibrium molecular dynamics and local density functional calculations.
    Leroy F; Schulte J; Balasubramanian G; Böhm MC
    J Chem Phys; 2014 Apr; 140(14):144704. PubMed ID: 24735310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations.
    Balasubramanian G; Puri IK; Böhm MC; Leroy F
    Nanoscale; 2011 Sep; 3(9):3714-20. PubMed ID: 21792432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Conductivity of ZnO Single Nanowire.
    Yuldashev ShU; Yalishev VSh; Cho HD; Kang TW
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1592-5. PubMed ID: 27433627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.
    Sarkar S; Zimmermann K; Leng W; Vikesland P; Zhang J; Dorn H; Diller T; Rylander C; Rylander MN
    Ann Biomed Eng; 2011 Jun; 39(6):1745-58. PubMed ID: 21360225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusually high thermal conductivity of carbon nanotubes.
    Berber S; Kwon YK; Tomanek D
    Phys Rev Lett; 2000 May; 84(20):4613-6. PubMed ID: 10990753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Conductivity of Metal-Coated Tri-Walled Carbon Nanotubes in the Presence of Vacancies-Molecular Dynamics Simulations.
    Dhumal RS; Bommidi D; Salehinia I
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31142028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
    Cui L; Feng Y; Tan P; Zhang X
    Phys Chem Chem Phys; 2015 Jul; 17(25):16476-82. PubMed ID: 26051798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.