These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 16392927)
1. Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. D'Hernoncourt J; Kalliadasis S; De Wit A J Chem Phys; 2005 Dec; 123(23):234503. PubMed ID: 16392927 [TBL] [Abstract][Full Text] [Related]
2. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. García Casado G; Tofaletti L; Müller D; D'Onofrio A J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215 [TBL] [Abstract][Full Text] [Related]
3. Hot spots in density fingering of exothermic autocatalytic chemical fronts. Gérard T; Tóth T; Grosfils P; Horváth D; De Wit A; Tóth A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016322. PubMed ID: 23005540 [TBL] [Abstract][Full Text] [Related]
4. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers. Rongy L; De Wit A J Chem Phys; 2009 Nov; 131(18):184701. PubMed ID: 19916617 [TBL] [Abstract][Full Text] [Related]
5. Flow-field development during finger splitting at an exothermic chemical reaction front. Sebestíková L; D'Hernoncourt J; Hauser MJ; Müller SC; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026309. PubMed ID: 17358424 [TBL] [Abstract][Full Text] [Related]
6. The effect of convection on a propagating front with a liquid product: Comparison of theory and experiments. McCaughey B; Pojman JA; Simmons C; Volpert VA Chaos; 1998 Jun; 8(2):520-529. PubMed ID: 12779755 [TBL] [Abstract][Full Text] [Related]
7. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. Rongy L; Schuszter G; Sinkó Z; Tóth T; Horváth D; Tóth A; De Wit A Chaos; 2009 Jun; 19(2):023110. PubMed ID: 19566245 [TBL] [Abstract][Full Text] [Related]
8. Density fingering of an exothermic autocatalytic reaction. Bánsági T; Horváth D; Tóth A; Yang J; Kalliadasis S; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):055301. PubMed ID: 14682835 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion. Lima D; D'Onofrio A; De Wit A J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043 [TBL] [Abstract][Full Text] [Related]
10. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. Rongy L; Assemat P; De Wit A Chaos; 2012 Sep; 22(3):037106. PubMed ID: 23020497 [TBL] [Abstract][Full Text] [Related]
11. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts. Levitán D; D'Onofrio A Chaos; 2012 Sep; 22(3):037107. PubMed ID: 23020498 [TBL] [Abstract][Full Text] [Related]
12. Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Almarcha C; Trevelyan PM; Grosfils P; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033009. PubMed ID: 24125346 [TBL] [Abstract][Full Text] [Related]
13. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. Rongy L; Goyal N; Meiburg E; De Wit A J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873 [TBL] [Abstract][Full Text] [Related]
14. Convective instabilities derived from dissipation of chemical energy. Simoyi RH Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521 [TBL] [Abstract][Full Text] [Related]
15. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells. Vasquez DA; De Wit A J Chem Phys; 2004 Jul; 121(2):935-41. PubMed ID: 15260625 [TBL] [Abstract][Full Text] [Related]
16. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts. D'Hernoncourt J; Zebib A; De Wit A Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245 [TBL] [Abstract][Full Text] [Related]
17. Front waves and complex spatiotemporal patterns in a reaction-diffusion-convection system with thermokinetic autocatalysis. Trávnícková T; Kohout M; Schreiber I; Kubícek M Chaos; 2009 Dec; 19(4):043125. PubMed ID: 20059221 [TBL] [Abstract][Full Text] [Related]
18. Scaling law of stable single cells in density fingering of chemical fronts. Tóth T; Horváth D; Tóth A J Chem Phys; 2008 Apr; 128(14):144509. PubMed ID: 18412461 [TBL] [Abstract][Full Text] [Related]
19. Propagating fronts in fluids with solutal feedback. Mukherjee S; Paul MR Phys Rev E; 2020 Mar; 101(3-1):032214. PubMed ID: 32290010 [TBL] [Abstract][Full Text] [Related]