These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 16392929)

  • 1. A general purpose model for the condensed phases of water: TIP4P/2005.
    Abascal JL; Vega C
    J Chem Phys; 2005 Dec; 123(23):234505. PubMed ID: 16392929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What ice can teach us about water interactions: a critical comparison of the performance of different water models.
    Vega C; Abascal JL; Conde MM; Aragones JL
    Faraday Discuss; 2009; 141():251-76; discussion 309-46. PubMed ID: 19227361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R; Alejandre J
    J Phys Chem B; 2014 Feb; 118(5):1263-72. PubMed ID: 24422512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potential model for the study of ices and amorphous water: TIP4P/Ice.
    Abascal JL; Sanz E; García Fernández R; Vega C
    J Chem Phys; 2005 Jun; 122(23):234511. PubMed ID: 16008466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified TIP3P water potential for simulation with Ewald summation.
    Price DJ; Brooks CL
    J Chem Phys; 2004 Nov; 121(20):10096-103. PubMed ID: 15549884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A classical polarizable model for simulations of water and ice.
    Viererblová L; Kolafa J
    Phys Chem Chem Phys; 2011 Nov; 13(44):19925-35. PubMed ID: 21959694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW; Swope WC; Pitera JW; Madura JD; Dick TJ; Hura GL; Head-Gordon T
    J Chem Phys; 2004 May; 120(20):9665-78. PubMed ID: 15267980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals.
    Yoo S; Zeng XC; Xantheas SS
    J Chem Phys; 2009 Jun; 130(22):221102. PubMed ID: 19530755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence.
    Luis DP; García-González A; Saint-Martin H
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hydrogen bonds in hydrophobicity: the free energy of cavity formation in water models with and without the hydrogen bonds.
    Madan B; Lee B
    Biophys Chem; 1994 Aug; 51(2-3):279-86; discussion 286-9. PubMed ID: 7919039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarizable six-point water models from computational and empirical optimization.
    Tröster P; Lorenzen K; Tavan P
    J Phys Chem B; 2014 Feb; 118(6):1589-602. PubMed ID: 24437570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm(3).
    Liu W; Wood RH; Doren DJ
    J Phys Chem B; 2008 Jun; 112(24):7289-97. PubMed ID: 18491938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.