These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

969 related articles for article (PubMed ID: 16392946)

  • 1. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential interaction between DNA and small ions in mixed-size counterion systems: Monte Carlo simulation and density functional study.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2007 Apr; 126(13):135102. PubMed ID: 17430070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G; Wong L; Pack GR
    Biopolymers; 1994 Feb; 34(2):227-37. PubMed ID: 8142591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent cations and the electrostatic potential around DNA: Monte Carlo and Poisson-Boltzmann calculations.
    Pack GR; Wong L; Lamm G
    Biopolymers; 1999 Jun; 49(7):575-90. PubMed ID: 10226502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional study on the structures and thermodynamic properties of small ions around polyanionic DNA.
    Wang K; Yu YX; Gao GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011912. PubMed ID: 15324093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model.
    Wang K; Yu YX; Gao GH
    J Chem Phys; 2008 May; 128(18):185101. PubMed ID: 18532848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study.
    You FQ; Yu YX; Gao GH
    J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-recognition and aggregation between diblock (charged/neutral) polyelectrolytes by Monte Carlo simulations.
    Feng J; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124913. PubMed ID: 16599731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model.
    Zhao H; dos Ramos MC; McCabe C
    J Chem Phys; 2007 Jun; 126(24):244503. PubMed ID: 17614560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory for planar electric double layers: closing the gap between simple and polyelectrolytes.
    Li Z; Wu J
    J Phys Chem B; 2006 Apr; 110(14):7473-84. PubMed ID: 16599527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of spherical electric double layers: a density functional approach.
    Goel T; Patra CN
    J Chem Phys; 2007 Jul; 127(3):034502. PubMed ID: 17655443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.