These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 16393451)

  • 1. A control system for a flexible spine belly-dancing humanoid.
    Or J
    Artif Life; 2006; 12(1):63-87. PubMed ID: 16393451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control system for the Honda humanoid robot.
    Takenaka T
    Age Ageing; 2006 Sep; 35 Suppl 2():ii24-ii26. PubMed ID: 16926199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.
    Hauser H; Neumann G; Ijspeert AJ; Maass W
    Biol Cybern; 2011 May; 104(4-5):235-49. PubMed ID: 21523489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic neural field approach to cognitive robotics.
    Erlhagen W; Bicho E
    J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new active visual system for humanoid robots.
    Xu D; Li YF; Tan M; Shen Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):320-30. PubMed ID: 18348917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking biped humanoids that perform manual labour.
    Hirukawa H
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):65-77. PubMed ID: 17148050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grounding language in action and perception: from cognitive agents to humanoid robots.
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):139-51. PubMed ID: 20416855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental specificity in belly dance mimics primal trunk locomotor patterns.
    Nugent MM; Milner TE
    J Neurophysiol; 2017 Mar; 117(3):1100-1111. PubMed ID: 28031401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we talk to robots? Ten-month-old infants expected interactive humanoid robots to be talked to by persons.
    Arita A; Hiraki K; Kanda T; Ishiguro H
    Cognition; 2005 Apr; 95(3):B49-57. PubMed ID: 15788157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Honda humanoid robots development.
    Hirose M; Ogawa K
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):11-9. PubMed ID: 17148047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully decentralized control of a soft-bodied robot inspired by true slime mold.
    Umedachi T; Takeda K; Nakagaki T; Kobayashi R; Ishiguro A
    Biol Cybern; 2010 Mar; 102(3):261-9. PubMed ID: 20204398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utility of evolving simulated robot morphology increases with task complexity for object manipulation.
    Bongard J
    Artif Life; 2010; 16(3):201-23. PubMed ID: 20059328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.