These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 16393451)

  • 41. Bio-inspired adaptive feedback error learning architecture for motor control.
    Tolu S; Vanegas M; Luque NR; Garrido JA; Ros E
    Biol Cybern; 2012 Oct; 106(8-9):507-22. PubMed ID: 22907270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robotic approaches to the posterior spine.
    Ponnusamy K; Chewning S; Mohr C
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2104-9. PubMed ID: 19730218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gait simulation via a 6-DOF parallel robot with iterative learning control.
    Aubin PM; Cowley MS; Ledoux WR
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1237-40. PubMed ID: 18334421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.
    Efe MO
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1561-70. PubMed ID: 19022726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stumbling with optimal phase reset during gait can prevent a humanoid from falling.
    Nakanishi M; Nomura T; Sato S
    Biol Cybern; 2006 Nov; 95(5):503-15. PubMed ID: 16969676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Matsuoka's CPG With Desired Rhythmic Signals for Adaptive Walking of Humanoid Robots.
    Wang Y; Xue X; Chen B
    IEEE Trans Cybern; 2020 Feb; 50(2):613-626. PubMed ID: 30307884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bipedal locomotion: toward unified concepts in robotics and neuroscience.
    Azevedo C; Espiau B; Amblard B; Assaiante C
    Biol Cybern; 2007 Feb; 96(2):209-28. PubMed ID: 17139512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cognitive nature of action - functional links between cognitive psychology, movement science, and robotics.
    Schack T; Ritter H
    Prog Brain Res; 2009; 174():231-50. PubMed ID: 19477343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative study of forced oscillators for the adaptive generation of rhythmic movements in robot controllers.
    Jouaiti M; Hénaff P
    Biol Cybern; 2019 Dec; 113(5-6):547-560. PubMed ID: 31576419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study on a miniature robotic system for active monitoring in the human respiratory tract.
    Zan P; Yan G; Huang B
    J Med Eng Technol; 2009; 33(1):25-32. PubMed ID: 19116851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perception-action map learning in controlled multiscroll systems applied to robot navigation.
    Arena P; De Fiore S; Fortuna L; Patané L
    Chaos; 2008 Dec; 18(4):043119. PubMed ID: 19123629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.
    Gentili RJ; Oh H; Molina J; Reggia JA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3052-5. PubMed ID: 23366569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Posture Control-Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses.
    Mergner T; Lippi V
    Front Neurorobot; 2018; 12():21. PubMed ID: 29867428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of movement in three-dimensional musculoskeletal human lumbar spine using directional encoding-based neurocontrollers.
    Nasseroleslami B; Vossoughi G; Boroushaki M; Parnianpour M
    J Biomech Eng; 2014 Sep; 136(9):091010. PubMed ID: 24828450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.