BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16393888)

  • 1. Metabolism and transport of oxazaphosphorines and the clinical implications.
    Zhang J; Tian Q; Yung Chan S; Chuen Li S; Zhou S; Duan W; Zhu YZ
    Drug Metab Rev; 2005; 37(4):611-703. PubMed ID: 16393888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights on cyclophosphamide metabolism and anticancer mechanism of action: A computational study.
    Dabbish E; Scoditti S; Shehata MNI; Ritacco I; Ibrahim MAA; Shoeib T; Sicilia E
    J Comput Chem; 2024 Apr; 45(10):663-670. PubMed ID: 38088485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Survival of Cellulose Sulphate-Encapsulated Cells and Metronomic Ifosfamide Control Tumour Growth in Pancreatic Cancer Models-A Prelude to Treating Solid Tumours Effectively in Pets and Humans.
    Salmons B; Gunzburg WH
    Life (Basel); 2023 Dec; 13(12):. PubMed ID: 38137959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role of acrolein in oxazaphosphorine-induced enhancement of immunological reactivity.
    Blomgren H; Hallström M
    Cancer Immunol Immunother; 1990; 31(4):221-5. PubMed ID: 2143101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxazaphosphorines: new therapeutic strategies for an old class of drugs.
    Giraud B; Hebert G; Deroussent A; Veal GJ; Vassal G; Paci A
    Expert Opin Drug Metab Toxicol; 2010 Aug; 6(8):919-38. PubMed ID: 20446865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of new oxazaphosphorine anticancer drugs.
    Liang J; Huang M; Duan W; Yu XQ; Zhou S
    Curr Pharm Des; 2007; 13(9):963-78. PubMed ID: 17430192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclophosphamide and cancer: golden anniversary.
    Emadi A; Jones RJ; Brodsky RA
    Nat Rev Clin Oncol; 2009 Nov; 6(11):638-47. PubMed ID: 19786984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The history of the oxazaphosphorine cytostatics.
    Brock N
    Cancer; 1996 Aug; 78(3):542-7. PubMed ID: 8697402
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy.
    Ahlmann M; Hempel G
    Cancer Chemother Pharmacol; 2016 Oct; 78(4):661-71. PubMed ID: 27646791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of cyclophosphamide and ifosfamide pharmacology.
    Fleming RA
    Pharmacotherapy; 1997; 17(5 Pt 2):146S-154S. PubMed ID: 9322882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An anniversary for cancer chemotherapy.
    Hirsch J
    JAMA; 2006 Sep; 296(12):1518-20. PubMed ID: 17003400
    [No Abstract]   [Full Text] [Related]  

  • 12. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma.
    Picher EA; Wahajuddin M; Barth S; Chisholm J; Shipley J; Pors K
    Cancers (Basel); 2024 Feb; 16(5):. PubMed ID: 38473371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents.
    Rushing BR
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatoprotective effect of taxifolin on cyclophosphamide-induced oxidative stress, inflammation, and apoptosis in mice: Involvement of Nrf2/HO-1 signaling.
    Althunibat OY; Abukhalil MH; Jghef MM; Alfwuaires MA; Algefare AI; Alsuwayt B; Alazragi R; Abourehab MAS; Almuqati AF; Karimulla S; Aladaileh SH
    Biomol Biomed; 2023 Jul; 23(4):649-660. PubMed ID: 36762432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Açai Berry Attenuates Cyclophosphamide-Induced Damage in Genitourinary Axis-Modulating Nrf-2/HO-1 Pathways.
    Siracusa R; D'Amico R; Fusco R; Impellizzeri D; Peritore AF; Gugliandolo E; Crupi R; Interdonato L; Cordaro M; Cuzzocrea S; Di Paola R
    Antioxidants (Basel); 2022 Nov; 11(12):. PubMed ID: 36552563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efflux capacity and aldehyde dehydrogenase both contribute to CD8+ T-cell resistance to posttransplant cyclophosphamide.
    Patterson MT; Nunes NS; Wachsmuth LP; Panjabi A; Fletcher RE; Khan SM; Dimitrova D; Kanakry JA; Luznik L; Kanakry CG
    Blood Adv; 2022 Sep; 6(17):4994-5008. PubMed ID: 35819449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanisms and Biomarkers Associated with Chemotherapy-Induced AKI.
    De Chiara L; Lugli G; Villa G; Raglianti V; Husain-Syed F; Ravaglia F; Romagnani P; Lazzeri E
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphenol-rich extract of Ocimum gratissimum leaves prevented toxic effects of cyclophosphamide on the kidney function of Wistar rats.
    Alabi QK; Akomolafe RO; Omole JG; Aturamu A; Ige MS; Kayode OO; Kajewole-Alabi D
    BMC Complement Med Ther; 2021 Nov; 21(1):274. PubMed ID: 34727903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidrox
    Fusco R; Salinaro AT; Siracusa R; D'Amico R; Impellizzeri D; Scuto M; Ontario ML; Crea R; Cordaro M; Cuzzocrea S; Di Paola R; Calabrese V
    Antioxidants (Basel); 2021 May; 10(5):. PubMed ID: 34068924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond DNA Damage: Exploring the Immunomodulatory Effects of Cyclophosphamide in Multiple Myeloma.
    Swan D; Gurney M; Krawczyk J; Ryan AE; O'Dwyer M
    Hemasphere; 2020 Apr; 4(2):e350. PubMed ID: 32309787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.