BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16394195)

  • 1. The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.
    Noda M
    Neuroscientist; 2006 Feb; 12(1):80-91. PubMed ID: 16394195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain.
    Noda M
    Exp Physiol; 2007 May; 92(3):513-22. PubMed ID: 17350991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior.
    Hiyama TY; Watanabe E; Okado H; Noda M
    J Neurosci; 2004 Oct; 24(42):9276-81. PubMed ID: 15496663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing.
    Shimizu H; Watanabe E; Hiyama TY; Nagakura A; Fujikawa A; Okado H; Yanagawa Y; Obata K; Noda M
    Neuron; 2007 Apr; 54(1):59-72. PubMed ID: 17408578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium sensing in the subfornical organ and body-fluid homeostasis.
    Hiyama TY; Noda M
    Neurosci Res; 2016 Dec; 113():1-11. PubMed ID: 27521454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(x)-deficient mice show normal vasopressin response to dehydration.
    Nagakura A; Hiyama TY; Noda M
    Neurosci Lett; 2010 Mar; 472(3):161-5. PubMed ID: 20138121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na(x), the brain sodium-level sensor, to suppress salt intake.
    Hiyama TY; Yoshida M; Matsumoto M; Suzuki R; Matsuda T; Watanabe E; Noda M
    Cell Metab; 2013 Apr; 17(4):507-19. PubMed ID: 23541371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na(x) Channel: What It Is and What It Does.
    Noda M; Hiyama TY
    Neuroscientist; 2015 Aug; 21(4):399-412. PubMed ID: 24962095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium sensing in the brain.
    Noda M; Hiyama TY
    Pflugers Arch; 2015 Mar; 467(3):465-74. PubMed ID: 25491503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia.
    Hiyama TY; Matsuda S; Fujikawa A; Matsumoto M; Watanabe E; Kajiwara H; Niimura F; Noda M
    Neuron; 2010 May; 66(4):508-22. PubMed ID: 20510856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional characterization of the promoter of the mouse sodium-activated sodium channel Na(x) gene (Scn7a).
    García-Villegas R; López-Alvarez LE; Arni S; Rosenbaum T; Morales MA
    J Neurosci Res; 2009 Aug; 87(11):2509-19. PubMed ID: 19326446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS.
    Watanabe E; Fujikawa A; Matsunaga H; Yasoshima Y; Sako N; Yamamoto T; Saegusa C; Noda M
    J Neurosci; 2000 Oct; 20(20):7743-51. PubMed ID: 11027237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of hydration and subfornical organ lesions in sodium-depletion induced salt appetite.
    Starbuck EM; Lane JR; Fitts DA
    Behav Neurosci; 1997 Feb; 111(1):206-13. PubMed ID: 9109639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central regulation of body-fluid homeostasis.
    Noda M; Sakuta H
    Trends Neurosci; 2013 Nov; 36(11):661-73. PubMed ID: 24016361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus.
    Tremblay C; Berret E; Henry M; Nehmé B; Nadeau L; Mouginot D
    J Neurophysiol; 2011 Feb; 105(2):650-60. PubMed ID: 21084682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs.
    Watanabe E; Hiyama TY; Shimizu H; Kodama R; Hayashi N; Miyata S; Yanagawa Y; Obata K; Noda M
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R568-76. PubMed ID: 16223844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.
    Stockand JD; Staruschenko A; Pochynyuk O; Booth RE; Silverthorn DU
    IUBMB Life; 2008 Sep; 60(9):620-8. PubMed ID: 18459164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells.
    Levin SI; Khaliq ZM; Aman TK; Grieco TM; Kearney JA; Raman IM; Meisler MH
    J Neurophysiol; 2006 Aug; 96(2):785-93. PubMed ID: 16687615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel spliced variant of the epithelial Na+ channel delta-subunit in the human brain.
    Yamamura H; Ugawa S; Ueda T; Nagao M; Shimada S
    Biochem Biophys Res Commun; 2006 Oct; 349(1):317-21. PubMed ID: 16930535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional relationship between subfornical organ cholinergic stimulation and nitrergic activation influencing cardiovascular and body fluid homeostasis.
    Saad WA; Guarda IF; Camargo LA; dos Santos TA; Saad WA
    Regul Pept; 2007 Oct; 143(1-3):28-33. PubMed ID: 17395280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.