These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1639454)

  • 1. Regulation of contraction and relaxation in arterial smooth muscle.
    Rembold CM
    Hypertension; 1992 Aug; 20(2):129-37. PubMed ID: 1639454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of contractile activity in vascular smooth muscle by protein kinases.
    Silver PJ
    Rev Clin Basic Pharm; 1985; 5(3-4):341-95. PubMed ID: 3029813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments.
    Weber LP; Van Lierop JE; Walsh MP
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):805-24. PubMed ID: 10200427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of vascular smooth muscle tone.
    Walsh MP
    Can J Physiol Pharmacol; 1994 Aug; 72(8):919-36. PubMed ID: 7834580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle.
    Morgado M; CairrĂ£o E; Santos-Silva AJ; Verde I
    Cell Mol Life Sci; 2012 Jan; 69(2):247-66. PubMed ID: 21947498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrovasodilators relax arterial smooth muscle by decreasing [Ca2+]i and uncoupling stress from myosin phosphorylation.
    McDaniel NL; Chen XL; Singer HA; Murphy RA; Rembold CM
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C461-7. PubMed ID: 1325117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ayerst Award Lecture 1990. Calcium-dependent mechanisms of regulation of smooth muscle contraction.
    Walsh MP
    Biochem Cell Biol; 1991 Dec; 69(12):771-800. PubMed ID: 1818584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ca2+], not diacylglycerol, is the primary regulator of sustained swine arterial smooth muscle contraction.
    Rembold CM; Weaver BA
    Hypertension; 1990 Jun; 15(6 Pt 2):692-8. PubMed ID: 2190921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrin-linked kinase is responsible for Ca2+-independent myosin diphosphorylation and contraction of vascular smooth muscle.
    Wilson DP; Sutherland C; Borman MA; Deng JT; Macdonald JA; Walsh MP
    Biochem J; 2005 Dec; 392(Pt 3):641-8. PubMed ID: 16201970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of vasoconstriction induced by endothelin-1 in smooth muscle of rabbit mesenteric artery.
    Yoshida M; Suzuki A; Itoh T
    J Physiol; 1994 Jun; 477(Pt 2):253-65. PubMed ID: 7932217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697.
    Wilson DP; Susnjar M; Kiss E; Sutherland C; Walsh MP
    Biochem J; 2005 Aug; 389(Pt 3):763-74. PubMed ID: 15823093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role for class II phosphoinositide 3-kinase alpha-isoform in Ca2+-induced, Rho- and Rho kinase-dependent regulation of myosin phosphatase and contraction in isolated vascular smooth muscle cells.
    Yoshioka K; Sugimoto N; Takuwa N; Takuwa Y
    Mol Pharmacol; 2007 Mar; 71(3):912-20. PubMed ID: 17179444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calyculin A on tension and myosin phosphorylation in skinned smooth muscle of the rabbit mesenteric artery.
    Suzuki A; Itoh T
    Br J Pharmacol; 1993 Jul; 109(3):703-12. PubMed ID: 8395295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle.
    Rembold CM; Murphy RA
    Circ Res; 1988 Sep; 63(3):593-603. PubMed ID: 3409490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle.
    Dimopoulos GJ; Semba S; Kitazawa K; Eto M; Kitazawa T
    Circ Res; 2007 Jan; 100(1):121-9. PubMed ID: 17158339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle.
    Aksoy MO; Mras S; Kamm KE; Murphy RA
    Am J Physiol; 1983 Sep; 245(3):C255-70. PubMed ID: 6311024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notch signaling regulates arterial vasoreactivity through opposing functions of Jagged1 and Dll4 in the vessel wall.
    Basu S; Barbur I; Calderon A; Banerjee S; Proweller A
    Am J Physiol Heart Circ Physiol; 2018 Dec; 315(6):H1835-H1850. PubMed ID: 30168730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase.
    Mita M; Yanagihara H; Hishinuma S; Saito M; Walsh MP
    Biochem J; 2002 Jun; 364(Pt 2):431-40. PubMed ID: 12023886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+]i, and arterial smooth muscle relaxation.
    Chen XL; Rembold CM
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C468-73. PubMed ID: 1325118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of signal transduction during alpha 2-adrenergic receptor-mediated contraction of vascular smooth muscle.
    Aburto TK; Lajoie C; Morgan KG
    Circ Res; 1993 Apr; 72(4):778-85. PubMed ID: 8095186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.