BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 16394732)

  • 21. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
    Ammanuel S; Brown I; Uribe J; Rehani B
    J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving residency training in arthroscopic knee surgery with use of a virtual-reality simulator. A randomized blinded study.
    Cannon WD; Garrett WE; Hunter RE; Sweeney HJ; Eckhoff DG; Nicandri GT; Hutchinson MR; Johnson DD; Bisson LJ; Bedi A; Hill JA; Koh JL; Reinig KD
    J Bone Joint Surg Am; 2014 Nov; 96(21):1798-806. PubMed ID: 25378507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Testing basic competency in knee arthroscopy using a virtual reality simulator: exploring validity and reliability.
    Jacobsen ME; Andersen MJ; Hansen CO; Konge L
    J Bone Joint Surg Am; 2015 May; 97(9):775-81. PubMed ID: 25948525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phantom-based multimodal interactions for medical education and training: the Munich Knee Joint Simulator.
    Riener R; Frey M; Pröll T; Regenfelder F; Burgkart R
    IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):208-16. PubMed ID: 15217266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.
    Lemole GM; Banerjee PP; Luciano C; Neckrysh S; Charbel FT
    Neurosurgery; 2007 Jul; 61(1):142-8; discussion 148-9. PubMed ID: 17621029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Initial results with the Munich knee simulator].
    Frey M; Riener R; Burgkart R; Pröll T
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():704-7. PubMed ID: 12465279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effectiveness of Virtual Reality Training in Orthopaedic Surgery.
    Aïm F; Lonjon G; Hannouche D; Nizard R
    Arthroscopy; 2016 Jan; 32(1):224-32. PubMed ID: 26412672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer-assisted training system for knee arthroscopy.
    Megali G; Tonet O; Dario P; Vascellari A; Marcacci M
    Int J Med Robot; 2005 Sep; 1(3):57-66. PubMed ID: 17518391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Training in tasks with different visual-spatial components does not improve virtual arthroscopy performance.
    Ström P; Kjellin A; Hedman L; Wredmark T; Felländer-Tsai L
    Surg Endosc; 2004 Jan; 18(1):115-20. PubMed ID: 14625735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual reality simulation of arthroscopy of the knee.
    Mabrey JD; Gillogly SD; Kasser JR; Sweeney HJ; Zarins B; Mevis H; Garrett WE; Poss R; Cannon WD
    Arthroscopy; 2002; 18(6):E28. PubMed ID: 12098110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A portable virtual environment knee arthroscopy training system with objective scoring.
    Sherman KP; Ward JW; Wills DP; Mohsen AM
    Stud Health Technol Inform; 1999; 62():335-6. PubMed ID: 10538382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient method for modelling soft tissue in virtual environment training systems.
    Wills DP; Chapman PM
    Stud Health Technol Inform; 2001; 81():570-6. PubMed ID: 11317812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual reality myringotomy simulation with real-time deformation: development and validity testing.
    Ho AK; Alsaffar H; Doyle PC; Ladak HM; Agrawal SK
    Laryngoscope; 2012 Aug; 122(8):1844-51. PubMed ID: 22566189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arthroscopy skills development with a surgical simulator: a comparative study in orthopaedic surgery residents.
    Rebolledo BJ; Hammann-Scala J; Leali A; Ranawat AS
    Am J Sports Med; 2015 Jun; 43(6):1526-9. PubMed ID: 25769535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficacy of standardized training on a virtual reality simulator to advance knee and shoulder arthroscopic motor skills.
    Rahm S; Wieser K; Bauer DE; Waibel FW; Meyer DC; Gerber C; Fucentese SF
    BMC Musculoskelet Disord; 2018 May; 19(1):150. PubMed ID: 29769058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.
    Liu K; Fang B; Wu Y; Li Y; Jin J; Tan L; Zhang S
    Anat Sci Int; 2013 Sep; 88(4):254-8. PubMed ID: 23801001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual surgery simulation for medical training using multi-resolution organ models.
    Kim J; Choi C; De S; Srinivasan MA
    Int J Med Robot; 2007 Jun; 3(2):149-58. PubMed ID: 17619246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of Virtual and Augmented Reality in Biomedical Imaging.
    González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ
    J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.