BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16394735)

  • 1. Virtual reality simulation of fluoroscopic navigation.
    Jaramaz B; Eckman K
    Clin Orthop Relat Res; 2006 Jan; 442():30-4. PubMed ID: 16394735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted LISS plate osteosynthesis of proximal tibia fractures: feasibility study and first clinical results.
    Grützner PA; Langlotz F; Zheng G; von Recum J; Keil C; Nolte LP; Wentzensen A; Wendl K
    Comput Aided Surg; 2005 May; 10(3):141-9. PubMed ID: 16321911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality techniques. Application to anatomic visualization and orthopaedics training.
    Heng PA; Cheng CY; Wong TT; Wu W; Xu Y; Xie Y; Chui YP; Chan KM; Leung KS
    Clin Orthop Relat Res; 2006 Jan; 442():5-12. PubMed ID: 16394732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a percutaneous iliosacral screw insertion simulator.
    Tonetti J; Vadcard L; Girard P; Dubois M; Merloz P; Troccaz J
    Orthop Traumatol Surg Res; 2009 Nov; 95(7):471-7. PubMed ID: 19801213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modality guidance based surgical navigation for percutaneous endoscopic transforaminal discectomy.
    Pan J; Yu D; Li R; Huang X; Wang X; Zheng W; Zhu B; Liu X
    Comput Methods Programs Biomed; 2021 Nov; 212():106460. PubMed ID: 34736173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual fluoroscopy: computer-assisted fluoroscopic navigation.
    Foley KT; Simon DA; Rampersaud YR
    Spine (Phila Pa 1976); 2001 Feb; 26(4):347-51. PubMed ID: 11224880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer aided long bone fracture treatment.
    Grützner PA; Suhm N
    Injury; 2004 Jun; 35 Suppl 1():S-A57-64. PubMed ID: 15183704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of three-dimensional image-guided technologies in percutaneous pelvic and acetabular lag screw placement.
    Xu P; Wang H; Liu ZY; Mu WD; Xu SH; Wang LB; Chen C; Cavanaugh JM
    J Surg Res; 2013 Nov; 185(1):338-46. PubMed ID: 23830362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [VRATS--Virtual Reality Arthroscopy Training Simulator].
    Müller W; Bockholt U; Lahmer A; Voss G; Börner M
    Radiologe; 2000 Mar; 40(3):290-4. PubMed ID: 10789129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoroscopy-based navigation system in spine surgery.
    Merloz P; Troccaz J; Vouaillat H; Vasile C; Tonetti J; Eid A; Plaweski S
    Proc Inst Mech Eng H; 2007 Oct; 221(7):813-20. PubMed ID: 18019467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy considerations in navigated cup placement for total hip arthroplasty.
    Langlotz U; Grützner PA; Bernsmann K; Kowal JH; Tannast M; Caversaccio M; Nolte LP
    Proc Inst Mech Eng H; 2007 Oct; 221(7):739-53. PubMed ID: 18019461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Report of a group developing a virtual reality simulator for arthroscopic surgery of the knee joint.
    Cannon WD; Eckhoff DG; Garrett WE; Hunter RE; Sweeney HJ
    Clin Orthop Relat Res; 2006 Jan; 442():21-9. PubMed ID: 16394734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative accuracy evaluation of virtual fluoroscopy--a method for application in computer-assisted distal locking.
    Suhm N
    Comput Aided Surg; 2001; 6(4):221-4. PubMed ID: 11835618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image guidance: fluoroscopic navigation.
    Kahler DM
    Clin Orthop Relat Res; 2004 Apr; (421):70-6. PubMed ID: 15123929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific endovascular simulation influences interventionalists performing carotid artery stenting procedures.
    Willaert WI; Aggarwal R; Van Herzeele I; O'Donoghue K; Gaines PA; Darzi AW; Vermassen FE; Cheshire NJ;
    Eur J Vasc Endovasc Surg; 2011 Apr; 41(4):492-500. PubMed ID: 21276738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training femoral neck screw insertion skills to surgical trainees: computer-assisted surgery versus conventional fluoroscopic technique.
    Nousiainen MT; Omoto DM; Zingg PO; Weil YA; Mardam-Bey SW; Eward WC
    J Orthop Trauma; 2013 Feb; 27(2):87-92. PubMed ID: 22688433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The virtual reality arthroscopy training simulator.
    Müller W; Bockholt U
    Stud Health Technol Inform; 1998; 50():13-9. PubMed ID: 10180528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a navigation system for dental implantation as a tool to train novice dental practitioners.
    Casap N; Nadel S; Tarazi E; Weiss EI
    J Oral Maxillofac Surg; 2011 Oct; 69(10):2548-56. PubMed ID: 21821328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction.
    Hofstetter R; Slomczykowski M; Krettek C; Köppen G; Sati M; Nolte LP
    Comput Aided Surg; 2000; 5(5):311-25. PubMed ID: 11169877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.