These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 16395540)
1. Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany. Freese HM; Karsten U; Schumann R Microb Ecol; 2006 Jan; 51(1):117-27. PubMed ID: 16395540 [TBL] [Abstract][Full Text] [Related]
2. Bacterial activity and bacterioplankton diversity in the eutrophic River Warnow--direct measurement of bacterial growth efficiency and its effect on carbon utilization. Warkentin M; Freese HM; Schumann R Microb Ecol; 2011 Jan; 61(1):190-200. PubMed ID: 20676625 [TBL] [Abstract][Full Text] [Related]
3. Behaviors of physiologically active bacteria in water environment and chlorine disinfection. Sawaya K; Kaneko N; Fukushi K; Yaguchi J Water Sci Technol; 2008; 58(7):1343-8. PubMed ID: 18957745 [TBL] [Abstract][Full Text] [Related]
4. Substrate utilization profiles of bacterial strains in plankton from the River Warnow, a humic and eutrophic river in north Germany. Freese HM; Eggert A; Garland JL; Schumann R Microb Ecol; 2010 Jan; 59(1):59-75. PubMed ID: 19936822 [TBL] [Abstract][Full Text] [Related]
5. Spatial variation in bacterial biomass, community composition and driving factors across a eutrophic river. Lu Q; Song Y; Mao G; Lin B; Wang Y; Gao G Ecotoxicol Environ Saf; 2020 Dec; 205():111113. PubMed ID: 32836153 [TBL] [Abstract][Full Text] [Related]
6. Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: implication for anthropogenic inputs. Zhou W; Long A; Jiang T; Chen S; Huang L; Huang H; Cai C; Yan Y Mar Pollut Bull; 2011 Apr; 62(4):726-33. PubMed ID: 21316714 [TBL] [Abstract][Full Text] [Related]
7. New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. Warkentin M; Freese HM; Karsten U; Schumann R Appl Environ Microbiol; 2007 Nov; 73(21):6722-9. PubMed ID: 17766446 [TBL] [Abstract][Full Text] [Related]
8. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from Northwestern semi-arid Mexico. Sánchez-Carrillo S; Alatorre LC; Sánchez-Andrés R; Garatuza-Payán J Environ Monit Assess; 2007 Sep; 132(1-3):377-93. PubMed ID: 17171240 [TBL] [Abstract][Full Text] [Related]
9. Changes in microbial food web structure in response to changed environmental trophic status: a case study of the Vranjic Basin (Adriatic Sea). Solić M; Krstulović N; Kuspilić G; Nincević Gladan Z; Bojanić N; Sestanović S; Santić D; Ordulj M Mar Environ Res; 2010 Aug; 70(2):239-49. PubMed ID: 20570345 [TBL] [Abstract][Full Text] [Related]
10. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Boulos L; Prévost M; Barbeau B; Coallier J; Desjardins R J Microbiol Methods; 1999 Jul; 37(1):77-86. PubMed ID: 10395466 [TBL] [Abstract][Full Text] [Related]
11. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413 [TBL] [Abstract][Full Text] [Related]
12. Application of a rapid direct viable count method to deep-sea sediment bacteria. Quéric NV; Soltwedel T; Arntz WE J Microbiol Methods; 2004 Jun; 57(3):351-67. PubMed ID: 15134883 [TBL] [Abstract][Full Text] [Related]
13. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Schaule G; Flemming HC; Ridgway HF Appl Environ Microbiol; 1993 Nov; 59(11):3850-7. PubMed ID: 8285688 [TBL] [Abstract][Full Text] [Related]
14. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystems. Bernard L; Courties C; Duperray C; Schäfer H; Muyzer G; Lebaron P Cytometry; 2001 Apr; 43(4):314-21. PubMed ID: 11260599 [TBL] [Abstract][Full Text] [Related]
15. Spatial and seasonal variations in phosphorus speciation along a river in a lowland catchment (Warnow, Germany). Bitschofsky F; Nausch M Sci Total Environ; 2019 Mar; 657():671-685. PubMed ID: 30677933 [TBL] [Abstract][Full Text] [Related]
16. Geochemical signatures (C, N, delta13C, delta15N, metals) of suspended matter in the river Weisse Elster (central Germany): their seasonal and flow-related distribution 1997-2001. Junge FW; Hanisch C; Zerling L; Gehre M Isotopes Environ Health Stud; 2005 Jun; 41(2):141-59. PubMed ID: 16191766 [TBL] [Abstract][Full Text] [Related]
17. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Rubin MA; Leff LG Microb Ecol; 2007 Aug; 54(2):374-83. PubMed ID: 17308951 [TBL] [Abstract][Full Text] [Related]
18. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France). Cébron A; Garnier J Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163 [TBL] [Abstract][Full Text] [Related]
19. Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater. Hu W; Murata K; Zhang D J Environ Sci (China); 2017 Jan; 51():202-213. PubMed ID: 28115131 [TBL] [Abstract][Full Text] [Related]
20. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Gasol JM; Zweifel UL; Peters F; Fuhrman JA; Hagström A Appl Environ Microbiol; 1999 Oct; 65(10):4475-83. PubMed ID: 10508078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]