These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16396028)

  • 1. Improved diffraction integral for studying the diffracted field of a spherical microlens.
    Duan K; Lü B
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2677-81. PubMed ID: 16396028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):68-76. PubMed ID: 15669616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of imaging properties of a microlens based on the method for a dyadic Green's function.
    Guo S; Guo H; Zhuang S
    Appl Opt; 2009 Jan; 48(2):321-7. PubMed ID: 19137043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture using Borgnis potentials. II. Application to the study of focal shift.
    Wang X; Fan Z; Tang T
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1326-32. PubMed ID: 16715150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):77-83. PubMed ID: 15669617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field anomalous spectral behavior in diffraction of a Gaussian pulsed beam from an annular aperture.
    Yang Y; Zou Q; Li Y
    Appl Opt; 2007 Jul; 46(21):4667-73. PubMed ID: 17609713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling microlenses by use of vectorial field rays and diffraction integrals.
    Alvarez-Cabanillas MA; Xu F; Fainman Y
    Appl Opt; 2004 Apr; 43(11):2242-50. PubMed ID: 15098825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fresnel approximations for acoustic fields of rectangularly symmetric sources.
    Mast TD
    J Acoust Soc Am; 2007 Jun; 121(6):3311-22. PubMed ID: 17552683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.
    Kolkoori S; Chitti Venkata K; Balasubramaniam K
    Ultrasonics; 2015 Jan; 55():33-41. PubMed ID: 25200698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical-numerical approach to diffraction phenomena.
    Bosch S; Ferré-Borrull J
    Opt Lett; 2001 Feb; 26(4):181-3. PubMed ID: 18033540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-shot measurements by Fresnel diffraction of divergent waves from a phase plate.
    Ghoorchi-Beygi M; Dashtdar M
    Appl Opt; 2020 Mar; 59(7):1968-1973. PubMed ID: 32225714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture.
    Belland P; Crenn JP
    Appl Opt; 1982 Feb; 21(3):522-7. PubMed ID: 20372488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focus of a diffracted Gaussian beam through a finite aperture lens: experimental and numerical investigations.
    Tanaka K; Kanzaki O
    Appl Opt; 1987 Jan; 26(2):390-5. PubMed ID: 20454143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits.
    Mielenz KD
    J Res Natl Inst Stand Technol; 2002; 107(4):355-62. PubMed ID: 27446736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array.
    Hsieh PY; Chou PY; Lin HA; Chu CY; Huang CT; Chen CH; Qin Z; Corral MM; Javidi B; Huang YP
    Opt Express; 2018 Apr; 26(8):10981-10996. PubMed ID: 29716026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniform theory for the diffraction of evanescent plane waves.
    Umul YZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2426-30. PubMed ID: 17621346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlens array expander with an improved light intensity distribution throughperiodic submicro-scale filling for near-eye displays.
    Li M; Wang L; Shen W; Wu D; Bai Y
    Appl Opt; 2018 Feb; 57(5):1026-1036. PubMed ID: 29469882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Evaluation of Diffraction Integrals.
    Mielenz KD
    J Res Natl Inst Stand Technol; 2000; 105(4):581-7. PubMed ID: 27551626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.