These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 16396500)
1. Effect of protein backbone folding on the stability of protein-ligand complexes. Estrada E; Uriarte E; Vilar S J Proteome Res; 2006 Jan; 5(1):105-11. PubMed ID: 16396500 [TBL] [Abstract][Full Text] [Related]
2. Structural parameterization of the binding enthalpy of small ligands. Luque I; Freire E Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999 [TBL] [Abstract][Full Text] [Related]
3. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
4. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. Lu Y; Yang CY; Wang S J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623 [TBL] [Abstract][Full Text] [Related]
6. A folding inhibitor of the HIV-1 protease. Broglia RA; Provasi D; Vasile F; Ottolina G; Longhi R; Tiana G Proteins; 2006 Mar; 62(4):928-33. PubMed ID: 16385559 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Hou T; Yu R J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185 [TBL] [Abstract][Full Text] [Related]
8. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding. Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468 [TBL] [Abstract][Full Text] [Related]
9. All-electron calculations of the nucleation structures in metal-induced zinc-finger folding: role of the Peptide backbone. Dudev T; Lim C J Am Chem Soc; 2007 Oct; 129(41):12497-504. PubMed ID: 17883271 [TBL] [Abstract][Full Text] [Related]
10. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs. Verkhivker G Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674 [TBL] [Abstract][Full Text] [Related]
11. HIV-1 protease folding and the design of drugs which do not create resistance. Broglia R; Levy Y; Tiana G Curr Opin Struct Biol; 2008 Feb; 18(1):60-6. PubMed ID: 18160276 [TBL] [Abstract][Full Text] [Related]
12. Molecular tongs containing amino acid mimetic fragments: new inhibitors of wild-type and mutated HIV-1 protease dimerization. Bannwarth L; Kessler A; Pèthe S; Collinet B; Merabet N; Boggetto N; Sicsic S; Reboud-Ravaux M; Ongeri S J Med Chem; 2006 Jul; 49(15):4657-64. PubMed ID: 16854071 [TBL] [Abstract][Full Text] [Related]
13. Length dependence of the coil <--> beta-sheet transition in a membrane environment. Meier M; Seelig J J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629 [TBL] [Abstract][Full Text] [Related]
14. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes. Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462 [TBL] [Abstract][Full Text] [Related]
15. Role of structural water molecule in HIV protease-inhibitor complexes: a QM/MM study. Suresh CH; Vargheese AM; Vijayalakshmi KP; Mohan N; Koga N J Comput Chem; 2008 Aug; 29(11):1840-9. PubMed ID: 18351589 [TBL] [Abstract][Full Text] [Related]
16. Comparative studies on inhibitors of HIV protease: a target for drug design. Jayaraman S; Shah K In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129 [TBL] [Abstract][Full Text] [Related]
17. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Seebach D; Beck AK; Bierbaum DJ Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902 [TBL] [Abstract][Full Text] [Related]
18. A density functional study of the hydrogen-bond network within the HIV-1 protease catalytic site cleft. Sirois S; Proynov EI; Truchon JF; Tsoukas CM; Salahub DR J Comput Chem; 2003 Jul; 24(9):1110-9. PubMed ID: 12759910 [TBL] [Abstract][Full Text] [Related]
19. Folding degrees of azurins and pseudoazurins. Implications for structure and function. Estrada E; Uriarte E Comput Biol Chem; 2005 Oct; 29(5):345-53. PubMed ID: 16213793 [TBL] [Abstract][Full Text] [Related]
20. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P; Bhattacharyya R Prog Biophys Mol Biol; 2007; 95(1-3):83-137. PubMed ID: 17629549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]