BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16396573)

  • 1. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrical studies of electroosmotic transport characteristics in submicrometer channels.
    Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D
    J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic transport and separations in fluidic nanochannels.
    Yuan Z; Garcia AL; Lopez GP; Petsev DN
    Electrophoresis; 2007 Feb; 28(4):595-610. PubMed ID: 17304495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of atomistic physics on electro-osmotic flow: an analysis based on density functional theory.
    Nilson RH; Griffiths SK
    J Chem Phys; 2006 Oct; 125(16):164510. PubMed ID: 17092108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of electrokinetic transport of a spherical particle in a microchannel.
    Unni HN; Keh HJ; Yang C
    Electrophoresis; 2007 Feb; 28(4):658-64. PubMed ID: 17304499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields.
    Carrique F; Arroyo FJ; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):126-37. PubMed ID: 16290771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions].
    Werner H; Slezak A
    Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic transport of charged solutes in micro- and nanochannels: the influence of transverse electromigration.
    Xuan X; Li D
    Electrophoresis; 2006 Dec; 27(24):5020-31. PubMed ID: 17124708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic transport of charged samples through rectangular channels with small zeta potentials.
    Dutta D
    Anal Chem; 2008 Jun; 80(12):4723-30. PubMed ID: 18476719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties of long straight nano-channels in electrolyte solutions: a systematic approach.
    Yaroshchuk AE
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):278-91. PubMed ID: 21496786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusioosmosis of electrolyte solutions in a fine capillary slit.
    Ma HC; Keh HJ
    J Colloid Interface Sci; 2006 Jun; 298(1):476-86. PubMed ID: 16364357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport in polymer-gel composites: response to a bulk concentration gradient.
    Hill RJ
    J Chem Phys; 2006 Jan; 124(1):14901. PubMed ID: 16409057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls.
    Scales N; Tait RN
    J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion size and image effect on electrokinetic flows.
    Liu Y; Liu M; Lau WM; Yang J
    Langmuir; 2008 Mar; 24(6):2884-91. PubMed ID: 18237199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.