BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16396622)

  • 1. Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites.
    Aartsma-Rus A; De Winter CL; Janson AA; Kaman WE; Van Ommen GJ; Den Dunnen JT; Van Deutekom JC
    Oligonucleotides; 2005 Dec; 15(4):284-97. PubMed ID: 16396622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells.
    Aartsma-Rus A; Kaman WE; Bremmer-Bout M; Janson AA; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Gene Ther; 2004 Sep; 11(18):1391-8. PubMed ID: 15229633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic modulation of DMD splicing by blocking exonic splicing enhancer sites with antisense oligonucleotides.
    Aartsma-Rus A; Janson AA; Heemskerk JA; De Winter CL; Van Ommen GJ; Van Deutekom JC
    Ann N Y Acad Sci; 2006 Oct; 1082():74-6. PubMed ID: 17145928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing.
    Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA
    Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice.
    Hiller M; Spitali P; Datson N; Aartsma-Rus A
    Methods Mol Biol; 2018; 1828():249-262. PubMed ID: 30171546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy.
    Aartsma-Rus A; Janson AA; van Ommen GJ; van Deutekom JC
    BMC Med Genet; 2007 Jul; 8():43. PubMed ID: 17612397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo comparison of 2'-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping.
    Heemskerk HA; de Winter CL; de Kimpe SJ; van Kuik-Romeijn P; Heuvelmans N; Platenburg GJ; van Ommen GJ; van Deutekom JC; Aartsma-Rus A
    J Gene Med; 2009 Mar; 11(3):257-66. PubMed ID: 19140108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications.
    Aartsma-Rus A; van Ommen GJ
    RNA; 2007 Oct; 13(10):1609-24. PubMed ID: 17684229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene.
    Pramono ZA; Wee KB; Wang JL; Chen YJ; Xiong QB; Lai PS; Yee WC
    Hum Gene Ther; 2012 Jul; 23(7):781-90. PubMed ID: 22486275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides.
    Wee KB; Pramono ZA; Wang JL; MacDorman KF; Lai PS; Yee WC
    PLoS One; 2008 Mar; 3(3):e1844. PubMed ID: 18365002
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Goossens R; Verwey N; Ariyurek Y; Schnell F; Aartsma-Rus A
    RNA Biol; 2023 Jan; 20(1):693-702. PubMed ID: 37667454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview on AON design.
    Aartsma-Rus A
    Methods Mol Biol; 2012; 867():117-29. PubMed ID: 22454058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms.
    Aartsma-Rus A; van Vliet L; Hirschi M; Janson AA; Heemskerk H; de Winter CL; de Kimpe S; van Deutekom JC; 't Hoen PA; van Ommen GJ
    Mol Ther; 2009 Mar; 17(3):548-53. PubMed ID: 18813282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy.
    Béroud C; Tuffery-Giraud S; Matsuo M; Hamroun D; Humbertclaude V; Monnier N; Moizard MP; Voelckel MA; Calemard LM; Boisseau P; Blayau M; Philippe C; Cossée M; Pagès M; Rivier F; Danos O; Garcia L; Claustres M
    Hum Mutat; 2007 Feb; 28(2):196-202. PubMed ID: 17041910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon skipping quantification by real-time PCR.
    Ferlini A; Rimessi P
    Methods Mol Biol; 2012; 867():189-99. PubMed ID: 22454062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.
    O'Leary DA; Sharif O; Anderson P; Tu B; Welch G; Zhou Y; Caldwell JS; Engels IH; Brinker A
    PLoS One; 2009 Dec; 4(12):e8348. PubMed ID: 20020055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy.
    Verheul RC; van Deutekom JC; Datson NA
    PLoS One; 2016; 11(9):e0162467. PubMed ID: 27612288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.