These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16397099)

  • 1. Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units.
    Casey JW; Holden NM
    J Environ Qual; 2006; 35(1):231-9. PubMed ID: 16397099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland.
    Casey JW; Holden NM
    J Environ Qual; 2005; 34(2):429-36. PubMed ID: 15758094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.
    O'Brien D; Shalloo L; Patton J; Buckley F; Grainger C; Wallace M
    Animal; 2012 Sep; 6(9):1512-27. PubMed ID: 23031525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greenhouse gas emissions from forestry operations: a life cycle assessment.
    Sonne E
    J Environ Qual; 2006; 35(4):1439-50. PubMed ID: 16825464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems.
    Nguyen TT; Doreau M; Eugène M; Corson MS; Garcia-Launay F; Chesneau G; van der Werf HM
    Animal; 2013 May; 7(5):860-9. PubMed ID: 23190866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agricultural soil greenhouse gas emissions: a review of national inventory methods.
    Lokupitiya E; Paustian K
    J Environ Qual; 2006; 35(4):1413-27. PubMed ID: 16825462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LIFE BEEF CARBON: a common framework for quantifying grass and corn based beef farms' carbon footprints.
    O'Brien D; Herron J; Andurand J; Caré S; Martinez P; Migliorati L; Moro M; Pirlo G; Dollé JB
    Animal; 2020 Apr; 14(4):834-845. PubMed ID: 31666147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beef production in balance: considerations for life cycle analyses.
    Place SE; Mitloehner FM
    Meat Sci; 2012 Nov; 92(3):179-81. PubMed ID: 22551868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of farming strategies on environmental impact of intensive dairy farms in Italy.
    Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A
    J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery.
    Parajuli R; Dalgaard T; Birkved M
    Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the environmental performance of English arable and livestock holdings using data from the Farm Accountancy Data Network (FADN).
    Westbury DB; Park JR; Mauchline AL; Crane RT; Mortimer SR
    J Environ Manage; 2011 Mar; 92(3):902-9. PubMed ID: 21075506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agricultural opportunities to mitigate greenhouse gas emissions.
    Johnson JM; Franzluebbers AJ; Weyers SL; Reicosky DC
    Environ Pollut; 2007 Nov; 150(1):107-24. PubMed ID: 17706849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan.
    Batool SA; Chuadhry MN
    Waste Manag; 2009 Jan; 29(1):63-9. PubMed ID: 18387288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of changing toward higher welfare broiler production systems on greenhouse gas emissions: a Dutch case study using life cycle assessment.
    Mostert PF; Bos AP; van Harn J; de Jong IC
    Poult Sci; 2022 Dec; 101(12):102151. PubMed ID: 36279609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review.
    Causarano HJ; Franzluebbers AJ; Reeves DW; Shaw JN
    J Environ Qual; 2006; 35(4):1374-83. PubMed ID: 16825457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy).
    Blengini GA; Busto M
    J Environ Manage; 2009 Mar; 90(3):1512-22. PubMed ID: 19046619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the economic consequences of the EU Water Framework Directive for Dutch agriculture.
    Helming J; Reinhard S
    J Environ Manage; 2009 Oct; 91(1):114-23. PubMed ID: 19716645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.