BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 16397230)

  • 1. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer.
    You Z; Shi XB; DuRaine G; Haudenschild D; Tepper CG; Lo SH; Gandour-Edwards R; de Vere White RW; Reddi AH
    Cancer Res; 2006 Jan; 66(1):175-83. PubMed ID: 16397230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis.
    Rocchi P; Beraldi E; Ettinger S; Fazli L; Vessella RL; Nelson C; Gleave M
    Cancer Res; 2005 Dec; 65(23):11083-93. PubMed ID: 16322258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model.
    Saleem M; Kweon MH; Yun JM; Adhami VM; Khan N; Syed DN; Mukhtar H
    Cancer Res; 2005 Dec; 65(23):11203-13. PubMed ID: 16322271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice.
    Wallner L; Dai J; Escara-Wilke J; Zhang J; Yao Z; Lu Y; Trikha M; Nemeth JA; Zaki MH; Keller ET
    Cancer Res; 2006 Mar; 66(6):3087-95. PubMed ID: 16540658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line.
    Lee SO; Dutt SS; Nadiminty N; Pinder E; Liao H; Gao AC
    Prostate; 2007 Sep; 67(12):1293-300. PubMed ID: 17626246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interruption of nuclear factor kappaB signaling by the androgen receptor facilitates 12-O-tetradecanoylphorbolacetate-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells.
    Altuwaijri S; Lin HK; Chuang KH; Lin WJ; Yeh S; Hanchett LA; Rahman MM; Kang HY; Tsai MY; Zhang Y; Yang L; Chang C
    Cancer Res; 2003 Nov; 63(21):7106-12. PubMed ID: 14612503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer.
    Yu S; Wang X; Ng CF; Chen S; Chan FL
    Cancer Res; 2007 May; 67(10):4904-14. PubMed ID: 17510420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer.
    Xie X; Zhao X; Liu Y; Zhang J; Matusik RJ; Slawin KM; Spencer DM
    Cancer Res; 2001 Sep; 61(18):6795-804. PubMed ID: 11559553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer.
    Rocchi P; So A; Kojima S; Signaevsky M; Beraldi E; Fazli L; Hurtado-Coll A; Yamanaka K; Gleave M
    Cancer Res; 2004 Sep; 64(18):6595-602. PubMed ID: 15374973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase.
    Igawa T; Lin FF; Rao P; Lin MF
    Prostate; 2003 Jun; 55(4):247-58. PubMed ID: 12712404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the androgen receptor pathway during progression of prostate cancer.
    Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G
    Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts.
    Zhang W; Chen Y; Wei H; Zheng C; Sun R; Zhang J; Tian Z
    Clin Cancer Res; 2008 Oct; 14(20):6432-9. PubMed ID: 18927282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR).
    Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M
    Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models.
    Miyake H; Nelson C; Rennie PS; Gleave ME
    Cancer Res; 2000 May; 60(9):2547-54. PubMed ID: 10811138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Fn14 promotes androgen-independent prostate cancer progression through MMP-9 and correlates with poor treatment outcome.
    Huang M; Narita S; Tsuchiya N; Ma Z; Numakura K; Obara T; Tsuruta H; Saito M; Inoue T; Horikawa Y; Satoh S; Habuchi T
    Carcinogenesis; 2011 Nov; 32(11):1589-96. PubMed ID: 21828059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1.
    Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM
    Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity.
    Hua D; Liu MY; Cheng ZD; Qin XJ; Zhang HM; Chen Y; Qin GJ; Liang G; Li JN; Han XF; Liu DX
    Mol Immunol; 2009 Sep; 46(15):2876-84. PubMed ID: 19643479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells.
    Gery S; Sawyers CL; Agus DB; Said JW; Koeffler HP
    Oncogene; 2002 Jul; 21(31):4739-46. PubMed ID: 12101412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dose 12-O-tetradecanoylphorbol-13-acetate enhances tumor necrosis factor related apoptosis-inducing ligand induced apoptosis in prostate cancer cells.
    Zhang X; Li W; Olumi AF
    Clin Cancer Res; 2007 Dec; 13(23):7181-90. PubMed ID: 18056199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.