These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16397496)

  • 1. Three-dimensional brittle shear fracturing by tensile crack interaction.
    Healy D; Jones RR; Holdsworth RE
    Nature; 2006 Jan; 439(7072):64-7. PubMed ID: 16397496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.
    Dejak B; Mlotkowski A
    J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid fracture and the transition from extension fracture to shear fracture.
    Ramsey JM; Chester FM
    Nature; 2004 Mar; 428(6978):63-6. PubMed ID: 14999279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test.
    Liu J; Ma F; Guo J; Zhou T; Song Y; Li F
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan.
    Ma KF; Lin YY; Lee SJ; Mori J; Brodsky EE
    Science; 2012 Jul; 337(6093):459-63. PubMed ID: 22837526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Scanning Electron Microscope (SEM) Observations of Damage and Crack Growth of Shale.
    Cui Z; Han W
    Microsc Microanal; 2018 Apr; 24(2):107-115. PubMed ID: 29699599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and Microcrack Evolution Characteristics of Roof Rock of Coal Seam with Different Angle of Defects Based on Particle Flow Code.
    Deng Q; Liu J; Wang J; Lyu X
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Microcrack Propagation and Energy Evolution in Brittle Rocks Based on the Voronoi Model.
    Liu G; Chen Y; Du X; Xiao P; Liao S; Azzam R
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic punch method to quantify the dynamic shear strength of brittle solids.
    Huang S; Feng XT; Xia K
    Rev Sci Instrum; 2011 May; 82(5):053901. PubMed ID: 21639512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Micro-Evolution Mechanism of 3D Crack Initiation in Brittle Materials with Hole under Uniaxial Compression.
    Maimaitiyusupu S; Zhu Z; Ren X; Zhang H; Zhu S
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Displacement-length scaling of brittle faults in ductile shear.
    Grasemann B; Exner U; Tschegg C
    J Struct Geol; 2011 Nov; 33(11):1650-1661. PubMed ID: 26806996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study on the Failure Mechanisms in Brittle Shales.
    Wang D; Wang X; Ge H; Sun D; Yu B
    ACS Omega; 2020 May; 5(18):10382-10394. PubMed ID: 32426595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the midline stress fields in maxillary and mandibular complete dentures: a pilot study.
    Prombonas AE; Vlissidis DS
    J Prosthet Dent; 2006 Jan; 95(1):63-70. PubMed ID: 16399277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dip effect on the orientation of rock failure plane under combined compression-shear loading.
    Sun L; Li P; Luo B; Liu X; Huang T; Su Y
    Sci Rep; 2024 Feb; 14(1):4406. PubMed ID: 38388543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-cleavage fracture planes in spheroidized A533B steel.
    Kumar A; Wilkinson AJ; Roberts SG
    J Microsc; 2007 Sep; 227(Pt 3):248-53. PubMed ID: 17760620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Numerical Study on the Failure Characteristics of Brittle Solids with a Circular Hole and Internal Cracks.
    Le C; Ren X; Wang H; Yu S
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.