BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16397764)

  • 1. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.
    Ohnuki S; Enomoto K; Yoshimoto H; Ohya Y
    J Biosci Bioeng; 2014 Mar; 117(3):278-84. PubMed ID: 24012106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program.
    Negishi T; Nogami S; Ohya Y
    J Biotechnol; 2009 May; 141(3-4):109-17. PubMed ID: 19433213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the biological activity of a novel 24-membered macrolide JBIR-19 in Saccharomyces cerevisiae by the morphological imaging program CalMorph.
    Ohnuki S; Kobayashi T; Ogawa H; Kozone I; Ueda JY; Takagi M; Shin-Ya K; Hirata D; Nogami S; Ohya Y
    FEMS Yeast Res; 2012 May; 12(3):293-304. PubMed ID: 22129199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of image processing program for yeast cell morphology.
    Ohtani M; Saka A; Sano F; Ohya Y; Morishita S
    J Bioinform Comput Biol; 2004 Jan; 1(4):695-709. PubMed ID: 15290760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae.
    Kubo K; Okada H; Shimamoto T; Kimori Y; Mizunuma M; Bi E; Ohnuki S; Ohya Y
    Curr Genet; 2019 Feb; 65(1):253-267. PubMed ID: 30066140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell shape and growth of budding yeast cells in restrictive microenvironments.
    Suzuki M; Asada Y; Watanabe D; Ohya Y
    Yeast; 2004 Sep; 21(12):983-9. PubMed ID: 15449311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle.
    Amberg DC
    Mol Biol Cell; 1998 Dec; 9(12):3259-62. PubMed ID: 9843567
    [No Abstract]   [Full Text] [Related]  

  • 10. SCMD: Saccharomyces cerevisiae Morphological Database.
    Saito TL; Ohtani M; Sawai H; Sano F; Saka A; Watanabe D; Yukawa M; Ohya Y; Morishita S
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D319-22. PubMed ID: 14681423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of Ca2+-induced morphology revealed by morphological phenotyping of Ca2+-sensitive mutants of Saccharomyces cerevisiae.
    Ohnuki S; Nogami S; Kanai H; Hirata D; Nakatani Y; Morishita S; Ohya Y
    Eukaryot Cell; 2007 May; 6(5):817-30. PubMed ID: 17351076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated microgravity triggers characteristic morphology and stress response in Saccharomyces cerevisiae.
    Nemoto S; Ohnuki S; Abe F; Ohya Y
    Yeast; 2019 Feb; 36(2):85-97. PubMed ID: 30350382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.
    Suzuki G; Wang Y; Kubo K; Hirata E; Ohnuki S; Ohya Y
    BMC Genomics; 2018 Feb; 19(1):149. PubMed ID: 29458326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assignment of unimodal probability distribution models for quantitative morphological phenotyping.
    Ghanegolmohammadi F; Ohnuki S; Ohya Y
    BMC Biol; 2022 Mar; 20(1):81. PubMed ID: 35361198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.
    Yang Yu B; Elbuken C; Ren CL; Huissoon JP
    J Biomed Opt; 2011 Jun; 16(6):066008. PubMed ID: 21721809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of yeast cell's bright-field image with an edge-tracing algorithm.
    Wang L; Li S; Sun Z; Wen G; Zheng F; Fu C; Li H
    J Biomed Opt; 2018 Nov; 23(11):1-7. PubMed ID: 30456935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data mining tools for the Saccharomyces cerevisiae morphological database.
    Saito TL; Sese J; Nakatani Y; Sano F; Yukawa M; Ohya Y; Morishita S
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W753-7. PubMed ID: 15980577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An algorithm to automate yeast segmentation and tracking.
    Doncic A; Eser U; Atay O; Skotheim JM
    PLoS One; 2013; 8(3):e57970. PubMed ID: 23520484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel tracking and analysis system for time-lapse cell imaging of Saccharomyces cerevisiae.
    Kanada F; Ogino Y; Yoshida T; Oki M
    Genes Genet Syst; 2020 Jul; 95(2):75-83. PubMed ID: 32249245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of local protein accumulation kinetics by live-cell imaging in yeast systems.
    Okada H; MacTaggart B; Bi E
    STAR Protoc; 2021 Sep; 2(3):100733. PubMed ID: 34458867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.