These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16397764)

  • 21. A microfluidic device to acquire high-magnification microphotographs of yeast cells.
    Ohnuki S; Nogami S; Ohya Y
    Cell Div; 2009 Mar; 4():5. PubMed ID: 19317904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of hyperbaric stress on yeast morphology: study by automated image analysis.
    Coelho MA; Belo I; Pinheiro R; Amaral AL; Mota M; Coutinho JA; Ferreira EC
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):318-24. PubMed ID: 15257421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying mitochondrial content in living cells.
    Viana MP; Lim S; Rafelski SM
    Methods Cell Biol; 2015; 125():77-93. PubMed ID: 25640425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Microscopy-Based Screening in Saccharomyces cerevisiae.
    Styles EB; Friesen H; Boone C; Andrews BJ
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.top087593. PubMed ID: 27037080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ice2p is important for the distribution and structure of the cortical ER network in Saccharomyces cerevisiae.
    Estrada de Martin P; Du Y; Novick P; Ferro-Novick S
    J Cell Sci; 2005 Jan; 118(Pt 1):65-77. PubMed ID: 15585575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy.
    Marbà-Ardébol AM; Emmerich J; Muthig M; Neubauer P; Junne S
    Microb Cell Fact; 2018 May; 17(1):73. PubMed ID: 29764434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AI-based forecasting of ethanol fermentation using yeast morphological data.
    Itto-Nakama K; Watanabe S; Kondo N; Ohnuki S; Kikuchi R; Nakamura T; Ogasawara W; Kasahara K; Ohya Y
    Biosci Biotechnol Biochem; 2021 Dec; 86(1):125-134. PubMed ID: 34751736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological analysis of yeast cells using an automated image processing system.
    Zalewski K; Buchholz R
    J Biotechnol; 1996 Jul; 48(1-2):43-9. PubMed ID: 8818272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The viability assessment of ethanol-producing yeast by computer-aided fluorescence microscopy].
    Puchkov EO
    Mikrobiologiia; 2006; 75(2):193-200. PubMed ID: 16758867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A convolutional neural network segments yeast microscopy images with high accuracy.
    Dietler N; Minder M; Gligorovski V; Economou AM; Joly DAHL; Sadeghi A; Chan CHM; Koziński M; Weigert M; Bitbol AF; Rahi SJ
    Nat Commun; 2020 Nov; 11(1):5723. PubMed ID: 33184262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live cell imaging of yeast.
    Rines DR; Thomann D; Dorn JF; Goodwin P; Sorger PK
    Cold Spring Harb Protoc; 2011 Sep; 2011(9):. PubMed ID: 21880825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Lipid Droplet Content in Fission and Budding Yeasts using Automated Image Processing.
    Princová J; Schätz M; Ťupa O; Převorovský M
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining Functions of Mannoproteins in
    Ghanegolmohammadi F; Okada H; Liu Y; Itto-Nakama K; Ohnuki S; Savchenko A; Bi E; Yoshida S; Ohya Y
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.
    Puchkov EO
    Yeast; 2010 Jun; 27(6):309-15. PubMed ID: 20146396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphometric quantification of a pseudohyphae forming Saccharomyces cerevisiae strain using in situ microscopy and image analysis.
    Belini VL; Junior OM; Ceccato-Antonini SR; Suhr H; Wiedemann P
    J Microbiol Methods; 2021 Nov; 190():106338. PubMed ID: 34597736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single yeast cell vacuolar milieu viscosity assessment by fluorescence polarization microscopy with computer image analysis.
    Puchkov EO
    Yeast; 2012 May; 29(5):185-90. PubMed ID: 22532478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4D Confocal Imaging of Yeast Organelles.
    Day KJ; Papanikou E; Glick BS
    Methods Mol Biol; 2016; 1496():1-11. PubMed ID: 27631997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase.
    Imai T; Ohno T
    J Biotechnol; 1995 Jan; 38(2):165-72. PubMed ID: 7765807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.