These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

949 related articles for article (PubMed ID: 16398057)

  • 1. Vascular effects of calcium channel antagonists: new evidence.
    Richard S
    Drugs; 2005; 65 Suppl 2():1-10. PubMed ID: 16398057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of actions of calcium antagonists on efferent arterioles--with special references to glomerular hypertension.
    Hayashi K; Ozawa Y; Fujiwara K; Wakino S; Kumagai H; Saruta T
    Am J Nephrol; 2003; 23(4):229-44. PubMed ID: 12840599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular effects of new calcium antagonists: is the principle of parcimony out of place?].
    Richard S; Virsolvy A; Fort A
    Ann Cardiol Angeiol (Paris); 2008 Jun; 57(3):166-73. PubMed ID: 18565491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Saruta T
    Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of T-type voltage-dependent Ca2+ channels by benidipine, a dihydropyridine calcium channel blocker, inhibits aldosterone production in human adrenocortical cell line NCI-H295R.
    Akizuki O; Inayoshi A; Kitayama T; Yao K; Shirakura S; Sasaki K; Kusaka H; Matsubara M
    Eur J Pharmacol; 2008 Apr; 584(2-3):424-34. PubMed ID: 18331727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.
    Hansen PB
    Acta Physiol (Oxf); 2013 Apr; 207(4):690-9. PubMed ID: 23351056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels.
    Hansen PB; Jensen BL; Andreasen D; Skøtt O
    Circ Res; 2001 Sep; 89(7):630-8. PubMed ID: 11577029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo.
    Honda M; Hayashi K; Matsuda H; Kubota E; Tokuyama H; Okubo K; Takamatsu I; Ozawa Y; Saruta T
    J Hypertens; 2001 Nov; 19(11):2031-7. PubMed ID: 11677369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Five different profiles of dihydropyridines in blocking T-type Ca(2+) channel subtypes (Ca(v)3.1 (alpha(1G)), Ca(v)3.2 (alpha(1H)), and Ca(v)3.3 (alpha(1I))) expressed in Xenopus oocytes.
    Furukawa T; Nukada T; Namiki Y; Miyashita Y; Hatsuno K; Ueno Y; Yamakawa T; Isshiki T
    Eur J Pharmacol; 2009 Jun; 613(1-3):100-7. PubMed ID: 19401195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efonidipine hydrochloride: a dual blocker of L- and T-type ca(2+) channels.
    Tanaka H; Shigenobu K
    Cardiovasc Drug Rev; 2002; 20(1):81-92. PubMed ID: 12070536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential blocking action of dihydropyridine Ca2+ antagonists on a T-type Ca2+ channel (alpha1G) expressed in Xenopus oocytes.
    Furukawa T; Nukada T; Miura R; Ooga K; Honda M; Watanabe S; Koganesawa S; Isshiki T
    J Cardiovasc Pharmacol; 2005 Mar; 45(3):241-6. PubMed ID: 15725949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiological significance of T-type Ca2+ channels: role of T-type Ca2+ channels in renal microcirculation.
    Hayashi K; Wakino S; Homma K; Sugano N; Saruta T
    J Pharmacol Sci; 2005 Nov; 99(3):221-7. PubMed ID: 16293936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal protection in hypertensive patients: selection of antihypertensive therapy.
    Wenzel RR
    Drugs; 2005; 65 Suppl 2():29-39. PubMed ID: 16398060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling.
    Moore KH; Clemmer JS
    Am J Physiol Renal Physiol; 2021 Oct; 321(4):F548-F557. PubMed ID: 34486399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs.
    Perez-Reyes E; Van Deusen AL; Vitko I
    J Pharmacol Exp Ther; 2009 Feb; 328(2):621-7. PubMed ID: 18974361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renoprotective effects of the L-/T-type calcium channel blocker benidipine in patients with hypertension.
    Tomino Y
    Curr Hypertens Rev; 2013 May; 9(2):108-14. PubMed ID: 23971692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature.
    Hansen PB; Poulsen CB; Walter S; Marcussen N; Cribbs LL; Skøtt O; Jensen BL
    Hypertension; 2011 Sep; 58(3):464-70. PubMed ID: 21788606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.