BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16398376)

  • 1. Precise control of end-tidal carbon dioxide levels using sequential rebreathing circuits.
    Somogyi RB; Vesely AE; Preiss D; Prisman E; Volgyesi G; Azami T; Iscoe S; Fisher JA; Sasano H
    Anaesth Intensive Care; 2005 Dec; 33(6):726-32. PubMed ID: 16398376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rebreathing improves accuracy of ventilatory monitoring.
    Bowie JR; Knox P; Downs JB; Smith RA
    J Clin Monit; 1995 Nov; 11(6):354-7. PubMed ID: 8576717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple breathing circuit minimizing changes in alveolar ventilation during hyperpnoea.
    Sommer LZ; Iscoe S; Robicsek A; Kruger J; Silverman J; Rucker J; Dickstein J; Volgyesi GA; Fisher JA
    Eur Respir J; 1998 Sep; 12(3):698-701. PubMed ID: 9762802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory deadspace measurements in neonates during extracorporeal membrane oxygenation.
    Arnold JH; Thompson JE; Benjamin PK
    Crit Care Med; 1993 Dec; 21(12):1895-900. PubMed ID: 8252895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting dead space ventilation in critically ill patients using clinically available data.
    Frankenfield DC; Alam S; Bekteshi E; Vender RL
    Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M
    Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison in spontaneous ventilation of the Maxima with the Humphrey ADE breathing system and between four methods for detecting rebreathing.
    Miller DM; Palm A
    Anaesth Intensive Care; 1995 Jun; 23(3):296-301. PubMed ID: 7573915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal high flow reduces minute ventilation during sleep through a decrease of carbon dioxide rebreathing.
    Pinkham M; Burgess R; Mündel T; Tatkov S
    J Appl Physiol (1985); 2019 Apr; 126(4):863-869. PubMed ID: 30730818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of CO2 production and physiological deadspace on end-tidal CO2 during controlled ventilation: a study using a mechanical model.
    Stockwell MA; Bruce W; Soni N
    Anaesth Intensive Care; 1989 Nov; 17(4):482-6. PubMed ID: 2512821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When does apparatus dead space matter for the pediatric patient?
    Pearsall MF; Feldman JM
    Anesth Analg; 2014 Apr; 118(4):776-80. PubMed ID: 24651232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fresh gas flow and carbon dioxide rebreathing in a low pressure semi-open anaesthesia system.
    Tweed WA; Amatya R; Lekhak BD
    Can J Anaesth; 1993 Nov; 40(11):1096-101. PubMed ID: 8269574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresh gas flow in coaxial Mapleson A and D circuits during spontaneous breathing.
    Jonsson LO; Zetterström H
    Acta Anaesthesiol Scand; 1986 Oct; 30(7):588-93. PubMed ID: 3101384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of 'ideal' alveolar air equations and corrected end-tidal PCO
    Van Iterson EH; Olson TP
    Int J Cardiol; 2018 Jan; 250():176-182. PubMed ID: 29054325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the onset of rebreathing in an enclosed afferent reservoir breathing system in anaesthetized, spontaneously breathing adults: a comparison of three methods.
    Barrie JR; Beatty PC; Campbell IT; Healy TE
    Eur J Anaesthesiol; 1994 May; 11(3):187-91. PubMed ID: 8050424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung mechanics and gas exchange during pressure-control ventilation in dogs. Augmentation of CO2 elimination by an intratracheal catheter.
    Nahum A; Burke WC; Ravenscraft SA; Marcy TW; Adams AB; Crooke PS; Marini JJ
    Am Rev Respir Dis; 1992 Oct; 146(4):965-73. PubMed ID: 1416426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Simultaneous measurements of end-expiratory and transcutaneous carbon dioxide partial pressure in ventilated premature and newborn infants].
    Arsowa S; Schmalisch G; Wauer RR
    Klin Padiatr; 1997; 209(2):47-53. PubMed ID: 9198671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graphic approach to assessing interrelationships among minute ventilation, arterial carbon dioxide tension, and ratio of physiologic dead space to tidal volume in patients on respirators.
    Selecky PA; Wasserman K; Klein M; Ziment I
    Am Rev Respir Dis; 1978 Jan; 117(1):181-4. PubMed ID: 619719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method for isocapnic hyperventilation evaluated in a lung model.
    Hallén K; Stenqvist O; Ricksten SE; Lindgren S
    Acta Anaesthesiol Scand; 2016 May; 60(5):597-606. PubMed ID: 26688296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.