BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 16398517)

  • 1. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process.
    Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F
    Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions.
    Pan H; Zhang Y; Hang Y; Shao H; Hu X; Xu Y; Feng C
    Biomacromolecules; 2012 Sep; 13(9):2859-67. PubMed ID: 22881188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH.
    Zhu J; Shao H; Hu X
    Int J Biol Macromol; 2007 Oct; 41(4):469-74. PubMed ID: 17689606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures.
    Huang S; Yee WA; Tjiu WC; Liu Y; Kotaki M; Boey YC; Ma J; Liu T; Lu X
    Langmuir; 2008 Dec; 24(23):13621-6. PubMed ID: 18956851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal behavior of Bombyx mori silk: evolution of crystalline parameters, molecular structure, and mechanical properties.
    Martel A; Burghammer M; Davies RJ; Riekel C
    Biomacromolecules; 2007 Nov; 8(11):3548-56. PubMed ID: 17949104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes.
    Wang JT; Li LL; Zhang MY; Liu SL; Jiang LH; Shen Q
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():417-21. PubMed ID: 24268277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical properties and dyeability of silk fibers degummed with citric acid.
    Khan MR; Tsukada M; Gotoh Y; Morikawa H; Freddi G; Shiozaki H
    Bioresour Technol; 2010 Nov; 101(21):8439-45. PubMed ID: 20598526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and mechanical properties of chitosan/carbon nanotubes composites.
    Wang SF; Shen L; Zhang WD; Tong YJ
    Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Templating effect of silk fibers in the oriented deposition of aragonite.
    Cheng C; Yang Y; Chen X; Shao Z
    Chem Commun (Camb); 2008 Nov; (43):5511-3. PubMed ID: 18997935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silklike materials constructed from sequences of Bombyx mori silk fibroin, fibronectin, and elastin.
    Yang M; Tanaka C; Yamauchi K; Ohgo K; Kurokawa M; Asakura T
    J Biomed Mater Res A; 2008 Feb; 84(2):353-63. PubMed ID: 17618489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.
    Sirichaisit J; Brookes VL; Young RJ; Vollrath F
    Biomacromolecules; 2003; 4(2):387-94. PubMed ID: 12625736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.
    Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P
    J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of silk sericin nanofibers from a silk sericin-hope cocoon with electrospinning method.
    Zhang X; Khan MM; Yamamoto T; Tsukada M; Morikawa H
    Int J Biol Macromol; 2012 Mar; 50(2):337-47. PubMed ID: 22198656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The properties of natural silk fibers: deformation study and NMR data].
    Rodin VV; Reznichenko GM; Vasina EL
    Biofizika; 2004; 49(6):1021-9. PubMed ID: 15612542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.