These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 16398527)

  • 41. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications.
    Fiordeliso J; Bron S; Kohn J
    J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vitamin A palmitate and aciclovir biodegradable microspheres for intraocular sustained release.
    Martínez-Sancho C; Herrero-Vanrell R; Negro S
    Int J Pharm; 2006 Dec; 326(1-2):100-6. PubMed ID: 16945492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s.
    Leemhuis M; Kruijtzer JA; Nostrum CF; Hennink WE
    Biomacromolecules; 2007 Sep; 8(9):2943-9. PubMed ID: 17715961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (GIC).
    Moshaverinia A; Roohpour N; Ansari S; Moshaverinia M; Schricker S; Darr JA; Rehman IU
    Dent Mater; 2009 Oct; 25(10):1240-7. PubMed ID: 19556000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reverse thermal gelation of aliphatically modified biodegradable triblock copolymers.
    Jo S; Kim J; Kim SW
    Macromol Biosci; 2006 Nov; 6(11):923-8. PubMed ID: 17099865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization.
    Becker TA; Kipke DR
    J Biomed Mater Res; 2002 Sep; 61(4):533-40. PubMed ID: 12115443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macrolactones and polyesters from ricinoleic acid.
    Slivniak R; Domb AJ
    Biomacromolecules; 2005; 6(3):1679-88. PubMed ID: 15877394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermogelling poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) disulfide multiblock copolymer as a thiol-sensitive degradable polymer.
    Sun KH; Sohn YS; Jeong B
    Biomacromolecules; 2006 Oct; 7(10):2871-7. PubMed ID: 17025364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery.
    Hanes J; Chiba M; Langer R
    Biomaterials; 1998; 19(1-3):163-72. PubMed ID: 9678864
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A thermosensitive poly(organophosphazene) hydrogel for injectable tissue-engineering applications.
    Yoon JY; Park KH; Song SC
    J Biomater Sci Polym Ed; 2007; 18(9):1181-93. PubMed ID: 17931507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamical dimer structure and liquid structure of fatty acids in their binary liquid mixture: decanoic/octadecanoic acid and decanoic/dodecanoic acid systems.
    Iwahashi M; Takebayashi S; Taguchi M; Kasahara Y; Minami H; Matsuzawa H
    Chem Phys Lipids; 2005 Feb; 133(2):113-24. PubMed ID: 15642581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications.
    Chun C; Lee SM; Kim SY; Yang HK; Song SC
    Biomaterials; 2009 Apr; 30(12):2349-60. PubMed ID: 19178941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New biodegradable thermogelling copolymers having very low gelation concentrations.
    Loh XJ; Goh SH; Li J
    Biomacromolecules; 2007 Feb; 8(2):585-93. PubMed ID: 17291082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
    Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T
    J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant.
    Shikanov A; Shikanov S; Vaisman B; Golenser J; Domb AJ
    Int J Pharm; 2008 Jun; 358(1-2):114-20. PubMed ID: 18406086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization.
    Pongjanyakul T; Puttipipatkhachorn S
    Int J Pharm; 2007 Feb; 331(1):61-71. PubMed ID: 17046185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reverse thermal gelation of PAF-PLX-PAF block copolymer aqueous solution.
    Kim EH; Joo MK; Bahk KH; Park MH; Chi B; Lee YM; Jeong B
    Biomacromolecules; 2009 Sep; 10(9):2476-81. PubMed ID: 19637909
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy.
    Wu MP; Tamada JA; Brem H; Langer R
    J Biomed Mater Res; 1994 Mar; 28(3):387-95. PubMed ID: 8077254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering.
    Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.