These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 16398528)
1. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers. Akagi T; Higashi M; Kaneko T; Kida T; Akashi M Biomacromolecules; 2006 Jan; 7(1):297-303. PubMed ID: 16398528 [TBL] [Abstract][Full Text] [Related]
2. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid). Akagi T; Higashi M; Kaneko T; Kida T; Akashi M Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. Akagi T; Kaneko T; Kida T; Akashi M J Control Release; 2005 Nov; 108(2-3):226-36. PubMed ID: 16125267 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions. Akagi T; Watanabe K; Kim H; Akashi M Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513 [TBL] [Abstract][Full Text] [Related]
6. Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(gamma-glutamate)s. Shimokuri T; Kaneko T; Akashi M Macromol Biosci; 2006 Nov; 6(11):942-51. PubMed ID: 17099867 [TBL] [Abstract][Full Text] [Related]
7. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles. Akagi T; Kim H; Akashi M J Biomater Sci Polym Ed; 2010; 21(3):315-28. PubMed ID: 20178688 [TBL] [Abstract][Full Text] [Related]
8. Formation of unimer nanoparticles by controlling the self-association of hydrophobically modified poly(amino acid)s. Akagi T; Piyapakorn P; Akashi M Langmuir; 2012 Mar; 28(11):5249-56. PubMed ID: 22385355 [TBL] [Abstract][Full Text] [Related]
9. Characterization and analytical development for amphiphilic poly(γ-glutamic acid) as raw material of nanoparticle adjuvants. Ikeda M; Akagi T; Yasuoka T; Nagao M; Akashi M J Pharm Biomed Anal; 2018 Feb; 150():460-468. PubMed ID: 29294451 [TBL] [Abstract][Full Text] [Related]
10. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Akagi T; Wang X; Uto T; Baba M; Akashi M Biomaterials; 2007 Aug; 28(23):3427-36. PubMed ID: 17482261 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions. Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032 [TBL] [Abstract][Full Text] [Related]
12. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles. Kim H; Akagi T; Akashi M Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015 [TBL] [Abstract][Full Text] [Related]
13. The role of hydrophobicity in the disruption of erythrocyte membrane by nanoparticles composed of hydrophobically modified poly(γ-glutamic acid). Shima F; Akagi T; Akashi M J Biomater Sci Polym Ed; 2014; 25(2):203-10. PubMed ID: 24134678 [TBL] [Abstract][Full Text] [Related]
14. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles. Shima F; Akagi T; Uto T; Akashi M Biomaterials; 2013 Dec; 34(37):9709-16. PubMed ID: 24016848 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(L-glutamic acid) polymersomes: size control and stability. Sanson C; Schatz C; Le Meins JF; Brûlet A; Soum A; Lecommandoux S Langmuir; 2010 Feb; 26(4):2751-60. PubMed ID: 19791794 [TBL] [Abstract][Full Text] [Related]
16. Biodistribution of (125)I-labeled polymeric vaccine carriers after subcutaneous injection. Toita R; Kanai Y; Watabe H; Nakao K; Yamamoto S; Hatazawa J; Akashi M Bioorg Med Chem; 2013 Sep; 21(17):5310-5. PubMed ID: 23830700 [TBL] [Abstract][Full Text] [Related]
17. Induction of endoplasmic reticulum-endosome fusion for antigen cross-presentation induced by poly (γ-glutamic acid) nanoparticles. Mukai Y; Yoshinaga T; Yoshikawa M; Matsuo K; Yoshikawa T; Matsuo K; Niki K; Yoshioka Y; Okada N; Nakagawa S J Immunol; 2011 Dec; 187(12):6249-55. PubMed ID: 22095716 [TBL] [Abstract][Full Text] [Related]
18. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo. Shima F; Uto T; Akagi T; Baba M; Akashi M Acta Biomater; 2013 Nov; 9(11):8894-901. PubMed ID: 23770225 [TBL] [Abstract][Full Text] [Related]
19. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles. Ikeda M; Akagi T; Nagao M; Akashi M Anal Bioanal Chem; 2018 Jul; 410(18):4445-4457. PubMed ID: 29931574 [TBL] [Abstract][Full Text] [Related]
20. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid). Shima F; Akagi T; Akashi M Bioconjug Chem; 2015 May; 26(5):890-8. PubMed ID: 25865284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]