BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 16398528)

  • 1. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers.
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Biomacromolecules; 2006 Jan; 7(1):297-303. PubMed ID: 16398528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid).
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier.
    Akagi T; Kaneko T; Kida T; Akashi M
    J Control Release; 2005 Nov; 108(2-3):226-36. PubMed ID: 16125267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(gamma-glutamic acid).
    Akagi T; Kaneko T; Kida T; Akashi M
    J Biomater Sci Polym Ed; 2006; 17(8):875-92. PubMed ID: 17024878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(gamma-glutamate)s.
    Shimokuri T; Kaneko T; Akashi M
    Macromol Biosci; 2006 Nov; 6(11):942-51. PubMed ID: 17099867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles.
    Akagi T; Kim H; Akashi M
    J Biomater Sci Polym Ed; 2010; 21(3):315-28. PubMed ID: 20178688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of unimer nanoparticles by controlling the self-association of hydrophobically modified poly(amino acid)s.
    Akagi T; Piyapakorn P; Akashi M
    Langmuir; 2012 Mar; 28(11):5249-56. PubMed ID: 22385355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and analytical development for amphiphilic poly(γ-glutamic acid) as raw material of nanoparticle adjuvants.
    Ikeda M; Akagi T; Yasuoka T; Nagao M; Akashi M
    J Pharm Biomed Anal; 2018 Feb; 150():460-468. PubMed ID: 29294451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives.
    Akagi T; Wang X; Uto T; Baba M; Akashi M
    Biomaterials; 2007 Aug; 28(23):3427-36. PubMed ID: 17482261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles.
    Kim H; Akagi T; Akashi M
    Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of hydrophobicity in the disruption of erythrocyte membrane by nanoparticles composed of hydrophobically modified poly(γ-glutamic acid).
    Shima F; Akagi T; Akashi M
    J Biomater Sci Polym Ed; 2014; 25(2):203-10. PubMed ID: 24134678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.
    Shima F; Akagi T; Uto T; Akashi M
    Biomaterials; 2013 Dec; 34(37):9709-16. PubMed ID: 24016848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(L-glutamic acid) polymersomes: size control and stability.
    Sanson C; Schatz C; Le Meins JF; Brûlet A; Soum A; Lecommandoux S
    Langmuir; 2010 Feb; 26(4):2751-60. PubMed ID: 19791794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodistribution of (125)I-labeled polymeric vaccine carriers after subcutaneous injection.
    Toita R; Kanai Y; Watabe H; Nakao K; Yamamoto S; Hatazawa J; Akashi M
    Bioorg Med Chem; 2013 Sep; 21(17):5310-5. PubMed ID: 23830700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of endoplasmic reticulum-endosome fusion for antigen cross-presentation induced by poly (γ-glutamic acid) nanoparticles.
    Mukai Y; Yoshinaga T; Yoshikawa M; Matsuo K; Yoshikawa T; Matsuo K; Niki K; Yoshioka Y; Okada N; Nakagawa S
    J Immunol; 2011 Dec; 187(12):6249-55. PubMed ID: 22095716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo.
    Shima F; Uto T; Akagi T; Baba M; Akashi M
    Acta Biomater; 2013 Nov; 9(11):8894-901. PubMed ID: 23770225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of analytical methods for evaluating the quality of dissociated and associated amphiphilic poly(γ-glutamic acid) nanoparticles.
    Ikeda M; Akagi T; Nagao M; Akashi M
    Anal Bioanal Chem; 2018 Jul; 410(18):4445-4457. PubMed ID: 29931574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid).
    Shima F; Akagi T; Akashi M
    Bioconjug Chem; 2015 May; 26(5):890-8. PubMed ID: 25865284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.